Furstenberg's $\times 2, \times 3$ type Conjectures
Furstenberg's Slicing Conjecture and our new results
A few words about the proofs

Furstenberg-Marstrand slicing Theorems for $(\times m, \times n)$ invariant sets

Amir Algom

The Pennsylvania State University

Joint work with Meng Wu, University of Oulu, Finland
Furstenberg’s $\times 2, \times 3$ type Conjectures

A few words about the proofs

Furstenberg’s Slicing Conjecture and our new results

For an integer $n \geq 2$ we define, for $x \in [0,1)$

$$T_n(x) = n \cdot x \mod 1$$

In base n this is

$$T_n(0.x_1x_2x_3...) = 0.x_2x_3x_4...$$

A set $X \subseteq [0,1)$ is T_n invariant if it is closed and $T_n(X) = X$.

For example, $C = \{ \sum_{k=1}^{\infty} x_k 3^k, \text{where } x_k \in \{0,2\} \}$ is T_3 invariant.

A measure μ is T_n invariant if $T_n\mu = \mu$.

Here all measures are Borel probability measures.

Amir Algom

Furstenberg-Marstrand slicing Theorems for $(\times m, \times n)$ invariant
For an integer $n \geq 2$ we define, for $x \in [0, 1]$

$$T_n(x) = n \cdot x \mod 1$$
For an integer $n \geq 2$ we define, for $x \in [0, 1]$

$$T_n(x) = n \cdot x \mod 1$$

In base n this is $T_n(0.x_1x_2x_3...) = 0.x_2x_3x_4...$.
For an integer $n \geq 2$ we define, for $x \in [0, 1]$

$$T_n(x) = n \cdot x \mod 1$$

In base n this is $T_n(0.x_1x_2x_3...) = 0.x_2x_3x_4...$.

A set $X \subseteq [0, 1)$ is T_n invariant if it is closed and $T_n(X) = X$.
For an integer $n \geq 2$ we define, for $x \in [0, 1]$

$$T_n(x) = n \cdot x \mod 1$$

In base n this is $T_n(0.x_1x_2x_3...) = 0.x_2x_3x_4....$

A set $X \subseteq [0, 1)$ is T_n invariant if it is closed and $T_n(X) = X.$ For example, $C = \left\{ \sum_{k=1}^{\infty} \frac{x_k}{3^k}, \text{ where } x_k \in \{0, 2\} \right\}$ is T_3 invariant.
For an integer $n \geq 2$ we define, for $x \in [0, 1]$

\[T_n(x) = n \cdot x \mod 1 \]

In base n this is $T_n(0.x_1x_2x_3...) = 0.x_2x_3x_4...$.

A set $X \subseteq [0, 1)$ is T_n invariant if it is closed and $T_n(X) = X$.

For example, $C = \left\{ \sum_{k=1}^{\infty} \frac{x_k}{3^k}, \text{ where } x_k \in \{0, 2\} \right\}$ is T_3 invariant.

A measure μ is T_n invariant if $T_n\mu = \mu$.
For an integer \(n \geq 2 \) we define, for \(x \in [0,1] \)

\[
T_n(x) = n \cdot x \mod 1
\]

In base \(n \) this is \(T_n(0.x_1x_2x_3...) = 0.x_2x_3x_4.... \).

A set \(X \subseteq [0,1) \) is \(T_n \) invariant if it is closed and \(T_n(X) = X \).

For example, \(C = \left\{ \sum_{k=1}^{\infty} \frac{x_k}{3^k}, \text{ where } x_k \in \{0,2\} \right\} \) is \(T_3 \) invariant.

A measure \(\mu \) is \(T_n \) invariant if \(T_n \mu = \mu \). Here all measures are Borel probability measures.
"The Furstenberg principle"
Integers \(m, n \geq 2 \) are independent if \(\frac{\log m}{\log n} \notin \mathbb{Q} \).
Integers $m, n \geq 2$ are independent if $\frac{\log m}{\log n} \not\in \mathbb{Q}$. We write $m \not\sim n$.

"The Furstenberg principle"
Integers $m, n \geq 2$ are independent if $\frac{\log m}{\log n} \notin \mathbb{Q}$. We write $m \not\sim n$.

"The Furstenberg principle" (late 1960’s)

If $m \not\sim n$ then expansions in base n and in base m should have no common structure.
Integers $m, n \geq 2$ are independent if $\frac{\log m}{\log n} \notin \mathbb{Q}$. We write $m \not\sim n$.

"The Furstenberg principle" (late 1960’s)

If $m \not\sim n$ then expansions in base n and in base m should have no common structure.

For example, the 3-adic expansion of 2^m "should look random".
Integers $m, n \geq 2$ are independent if $\frac{\log m}{\log n} \notin \mathbb{Q}$. We write $m \not\sim n$.

"The Furstenberg principle" (late 1960’s)
If $m \not\sim n$ then expansions in base n and in base m should have no common structure.

For example, the 3-adic expansion of 2^m "should look random".

Dynamical version
Let A be a T_m invariant set, and let B be a T_n invariant set.
Integers $m, n \geq 2$ are independent if $\frac{\log m}{\log n} \notin \mathbb{Q}$. We write $m \not\sim n$.

"The Furstenberg principle" (late 1960’s)

If $m \not\sim n$ then expansions in base n and in base m should have no common structure.

For example, the 3-adic expansion of 2^m "should look random".

Dynamical version

Let A be a T_m invariant set, and let B be a T_n invariant set. If $m \not\sim n$ then A and B should have no common structure.
Integers $m, n \geq 2$ are independent if $\frac{\log m}{\log n} \not\in \mathbb{Q}$. We write $m \not\sim n$.

"The Furstenberg principle" (late 1960’s)

If $m \not\sim n$ then expansions in base n and in base m should have no common structure.

For example, the 3-adic expansion of 2^m "should look random".

Dynamical version

Let A be a T_m invariant set, and let B be a T_n invariant set. If $m \not\sim n$ then A and B should have no common structure. Similarly, if μ is T_m invariant, and ν is T_n invariant, then μ and ν should share no common structure.
The $\times 2, \times 3$ Conjecture

Theorem (Furstenberg, 1967)
Let $X \subseteq T := \mathbb{R}/\mathbb{Z}$ be a closed set that is invariant under both T_m and T_n. If $m \not\sim n$ then either X is finite or $X = T$.

Conjecture (Furstenberg, 1967)
If μ is a Borel probability measure on the circle invariant under T_m and T_n. If $m \not\sim n$ then it is a convex combination of the Lebesgue measure and a purely atomic measure.

In the early 1990's, Rudolph and Johnson proved the Conjecture holds true in the positive entropy case. The zero entropy case remains open.
The $\times 2, \times 3$ Conjecture

Theorem (Furstenberg, 1967)

Let $X \subseteq T := \mathbb{R}/\mathbb{Z}$ be a closed set that is invariant under both T_m and T_n.

Amir Algom
The $\times 2, \times 3$ Conjecture

Theorem (Furstenberg, 1967)

Let $X \subseteq T := \mathbb{R}/\mathbb{Z}$ be a closed set that is invariant under both T_m and T_n. If $m \not\sim n$ then either X is finite or $X = T$.

A few words about the proofs

The $\times 2, \times 3$ Conjecture
The $\times 2, \times 3$ Conjecture

Theorem (Furstenberg, 1967)

Let $X \subseteq \mathbb{T} := \mathbb{R}/\mathbb{Z}$ be a closed set that is invariant under both T_m and T_n. If $m \not\sim n$ then either X is finite or $X = \mathbb{T}$.

Conjecture (Furstenberg, 1967)

If μ is a Borel probability measure on the circle invariant under T_m and T_n.
Furstenberg’s $\times 2, \times 3$ type Conjectures

Furstenberg’s Slicing Conjecture and our new results

A few words about the proofs

The $\times 2, \times 3$ Conjecture

Theorem (Furstenberg, 1967)

Let $X \subseteq \mathbb{T} := \mathbb{R}/\mathbb{Z}$ be a closed set that is invariant under both T_m and T_n. If $m \not\sim n$ then either X is finite or $X = \mathbb{T}$.

Conjecture (Furstenberg, 1967)

If μ is a Borel probability measure on the circle invariant under T_m and T_n. If $m \not\sim n$ then it is a convex combination of the Lebesgue measure and a purely atomic measure.
The $\times 2, \times 3$ Conjecture

Theorem (Furstenberg, 1967)

Let $X \subseteq \mathbb{T} := \mathbb{R}/\mathbb{Z}$ be a closed set that is invariant under both T_m and T_n. If $m \not\sim n$ then either X is finite or $X = \mathbb{T}$.

Conjecture (Furstenberg, 1967)

If μ is a Borel probability measure on the circle invariant under T_m and T_n. If $m \not\sim n$ then it is a convex combination of the Lebesgue measure and a purely atomic measure.

In the early 1990’s, Rudolph and Johnson proved the Conjecture holds true in the positive entropy case. The zero entropy case remains open.
Furstenberg’s $\times 2, \times 3$ type Conjectures
Furstenberg’s Slicing Conjecture and our new results
A few words about the proofs

1. Let $r > 0$. For a bounded set $A \subseteq \mathbb{R}^d$ let $N_r(A)$ denote the minimal amount of sets of diameter r required to cover A.

2. The box dimension of A is defined as $dim_B A = \lim_{r \to 0} \frac{\log N_r(A)}{-\log r}$.

3. The Hausdorff dimension of a set A is denoted by $dim_H A$, and $dim_P A$ will denote the packing dimension of A.

4. In general, $dim_H A \leq dim_P A \leq dim_B A$.

Theorem (Furstenberg, 1967)
Let X be a closed T_m invariant set. Then $dim_H A = dim_P A = dim_B A$.
Let $r > 0$. For a bounded set $A \subseteq \mathbb{R}^d$ let $N_r(A)$ denote the minimal amount of sets of diameter r required to cover A.
1. Let $r > 0$. For a bounded set $A \subseteq \mathbb{R}^d$ let $N_r(A)$ denote the minimal amount of sets of diameter r required to cover A.

2. The box dimension of A is defined as
 \[
 \dim_B A = \lim_{r \to 0} \frac{\log N_r(A)}{-\log r}.
 \]
Let $r > 0$. For a bounded set $A \subseteq \mathbb{R}^d$ let $N_r(A)$ denote the minimal amount of sets of diameter r required to cover A.

The box dimension of A is defined as

$$\dim_B A = \lim_{r \to 0} \frac{\log N_r(A)}{-\log r}.$$

If the limit does not exist, the upper box dimension $\dim_B A$ is the corresponding $\lim \sup$.

In general, $\dim_H A \leq \dim_P A \leq \dim_B A$.

Theorem (Furstenberg, 1967)

Let X be a closed T^m invariant set. Then $\dim_H A = \dim_P A = \dim_B A$.

Amir Algom

Furstenberg-Marstrand slicing Theorems for $(\times m, \times n)$ invariant
1. Let $r > 0$. For a bounded set $A \subseteq \mathbb{R}^d$ let $\mathcal{N}_r(A)$ denote the minimal amount of sets of diameter r required to cover A.

2. The box dimension of A is defined as
 \[\dim_B A = \lim_{r \to 0} \frac{\log \mathcal{N}_r(A)}{-\log r}. \]
 If the limit does not exist, the upper box dimension $\dim_B A$ is the corresponding $\lim \sup$.

3. The Hausdorff dimension of a set A is denoted by $\dim_H A$.
Let $r > 0$. For a bounded set $A \subseteq \mathbb{R}^d$ let $N_r(A)$ denote the minimal amount of sets of diameter r required to cover A.

2. The box dimension of A is defined as
$$\dim_{B} A = \lim_{r \to 0} \frac{\log N_r(A)}{-\log r}.$$ If the limit does not exist, the upper box dimension $\dim_{B} A$ is the corresponding $\lim \sup$.

3. The Hausdorff dimension of a set A is denoted by $\dim_{H} A$, and $\dim_{P} A$ will denote the packing dimension of A.

Furstenberg’s $\times 2$, $\times 3$ type Conjectures
Furstenberg’s Slicing Conjecture and our new results
A few words about the proofs
Let $r > 0$. For a bounded set $A \subseteq \mathbb{R}^d$ let $\mathcal{N}_r(A)$ denote the minimal amount of sets of diameter r required to cover A.

2. The box dimension of A is defined as
$$\dim_B A = \lim_{r \to 0} \frac{\log \mathcal{N}_r(A)}{-\log r}.$$ If the limit does not exist, the upper box dimension $\dim_B A$ is the corresponding \limsup.

3. The Hausdorff dimension of a set A is denoted by $\dim_H A$, and $\dim_P A$ will denote the packing dimension of A.

4. In general, $\dim_H A \leq \dim_P A \leq \dim_B A$.

Amir Algom

Furstenberg-Marstrand slicing Theorems for $(\times m, \times n)$ invariant sets.
Let $r > 0$. For a bounded set $A \subseteq \mathbb{R}^d$ let $\mathcal{N}_r(A)$ denote the minimal amount of sets of diameter r required to cover A.

The box dimension of A is defined as
\[
\dim_B A = \lim_{r \to 0} \frac{\log \mathcal{N}_r(A)}{-\log r}.
\]
If the limit does not exist, the upper box dimension $\dim_B A$ is the corresponding $\lim \sup$.

The Hausdorff dimension of a set A is denoted by $\dim_H A$, and $\dim_P A$ will denote the packing dimension of A.

In general, $\dim_H A \leq \dim_P A \leq \overline{\dim_B A}$.

Theorem (Furstenberg, 1967)

Let X be a closed T_m invariant set. Then
\[
\dim_H A = \dim_P A = \dim_B A.
\]
Furstenberg’s Conjecture about sum sets

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then
\[
\dim H(X + Y) \leq \min\{\dim H X + \dim H Y, 1\}. \tag{1}
\]

For any X, Y the RHS of (1) is an upper bound. $X + Y$ is the image of $X \times Y$ under the projection $(x, y) \mapsto x + y$.

By Marstrand's projection Theorem (1954), for all Borel sets $A, B \subseteq \mathbb{R}$:

for Lebesgue almost every u, \[
\dim H(A + u \cdot B) = \min\{\dim H A + \dim H B, 1\}.
\]

If X and Y have no common structure, then (1) "should" hold (but not vice versa!).
Furstenberg’s Conjecture about sum sets

Conjecture (Furstenberg)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively.
Furstenberg’s Conjecture about sum sets

Conjecture (Furstenberg)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then

$$\dim_H (X + Y) = \min\{\dim_H X + \dim_H Y, 1\}. \quad (1)$$
Furstenberg’s Conjecture about sum sets

Conjecture (Furstenberg)
Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then

$$\dim_H (X + Y) = \min\{\dim_H X + \dim_H Y, 1\}. \quad (1)$$

1. For any X, Y the RHS of (1) is an upper bound.
Furstenberg’s Conjecture about sum sets

Conjecture (Furstenberg)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then

$$\dim_H (X + Y) = \min \{ \dim_H X + \dim_H Y, 1 \}. \quad (1)$$

For any X, Y the RHS of (1) is an upper bound. $X + Y$ is the image of $X \times Y$ under the projection $(x, y) \mapsto x + y$.

Furstenberg’s Slicing Conjecture and our new results

A few words about the proofs
Furstenberg’s Conjecture about sum sets

Conjecture (Furstenberg)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then

$$\dim_H (X + Y) = \min\{\dim_H X + \dim_H Y, 1\}. \quad (1)$$

1. For any X, Y the RHS of (1) is an upper bound. $X + Y$ is the image of $X \times Y$ under the projection $(x, y) \mapsto x + y$.

2. By Marstrand’s projection Theorem (1954), for all Borel sets $A, B \subset \mathbb{R}$:
Furstenberg’s Conjecture about sum sets

Conjecture (Furstenberg)
Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then

$$\dim_H (X + Y) = \min\{\dim_H X + \dim_H Y, 1\}. \quad (1)$$

1. For any X, Y the RHS of (1) is an upper bound. $X + Y$ is the image of $X \times Y$ under the projection $(x, y) \mapsto x + y$.

2. By Marstrand’s projection Theorem (1954), for all Borel sets $A, B \subset \mathbb{R}$: for Lebesgue almost every u,
Furstenberg’s Conjecture about sum sets

Conjecture (Furstenberg)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then

$$\dim_H (X + Y) = \min\{\dim_H X + \dim_H Y, 1\}. \quad (1)$$

1. For any X, Y the RHS of (1) is an upper bound. $X + Y$ is the image of $X \times Y$ under the projection $(x, y) \mapsto x + y$.

2. By Marstrand’s projection Theorem (1954), for all Borel sets $A, B \subset \mathbb{R}$: for Lebesgue almost every u,

$$\dim_H (A + u \cdot B) = \min\{\dim_H A + \dim_H B, 1\}$$
Conjecture (Furstenberg)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then

$$\dim_H (X + Y) = \min\{\dim_H X + \dim_H Y, 1\}. \quad (1)$$

1. For any X, Y the RHS of (1) is an upper bound. $X + Y$ is the image of $X \times Y$ under the projection $(x, y) \mapsto x + y$.

2. By Marstrand’s projection Theorem (1954), for all Borel sets $A, B \subset \mathbb{R}$: for Lebesgue almost every u, $\dim_H (A + u \cdot B) = \min\{\dim_H A + \dim_H B, 1\}$

3. If X and Y have no common structure, then (1) ”should” hold (but not vice versa!).
On the resolution of the sum set Conjecture

An n-adic Cantor set is a set of the form, for $D \subseteq \{0, \ldots, n-1\}$

$$\infty \sum_{k=1}^{n} x_k n_k : x_k \in D$$

In 2009 Shmerkin and Peres proved the Conjecture when X and Y are m-adic and n-adic Cantor sets, respectively. The proof relied on the work of Moreira, about sumsets of non-linear Cantor sets (1998).

Theorem (Hochman-Shmerkin, 2012)
The sum-set Conjecture holds true. In fact, for all $u \neq 0$

$$\dim_H(X + u \cdot Y) = \min\{\dim_H X + \dim_H Y, 1\}.$$
Furstenberg’s $\times 2, \times 3$ type Conjectures
Furstenberg’s Slicing Conjecture and our new results
A few words about the proofs

On the resolution of the sum set Conjecture

An n adic Cantor set is a set of the form, for $D \subseteq \{0, \ldots, n - 1\}$

$$\left\{ \sum_{k=1}^{\infty} \frac{x_k}{n^k} : x_k \in D \right\}$$
Furstenberg’s $\times 2, \times 3$ type Conjectures

Furstenberg’s Slicing Conjecture and our new results

A few words about the proofs

On the resolution of the sum set Conjecture

An n-adic Cantor set is a set of the form, for $D \subseteq \{0, \ldots, n-1\}$

$$\left\{ \sum_{k=1}^{\infty} \frac{x_k}{n^k} : x_k \in D \right\}$$

In 2009 Shmerkin and Peres proved the Conjecture when X and Y are m-adic and n-adic Cantor sets, respectively.
An n-adic Cantor set is a set of the form, for $D \subseteq \{0, \ldots, n - 1\}$

$$\left\{ \sum_{k=1}^{\infty} \frac{x_k}{n^k} : x_k \in D \right\}$$

In 2009 Shmerkin and Peres proved the Conjecture when X and Y are m-adic and n-adic Cantor sets, respectively. The proof relied on the work of Moreira, about sumsets of non-linear Cantor sets (1998).
On the resolution of the sum set Conjecture

An n-adic Cantor set is a set of the form, for $D \subseteq \{0, \ldots, n-1\}$

$$\left\{ \sum_{k=1}^{\infty} \frac{x_k}{n^k} : x_k \in D \right\}$$

In 2009 Shmerkin and Peres proved the Conjecture when X and Y are m-adic and n-adic Cantor sets, respectively. The proof relied on the work of Moreira, about sumsets of non-linear Cantor sets (1998).

Theorem (Hochman-Shmerkin, 2012)

The sum-set Conjecture holds true.
An n-adic Cantor set is a set of the form, for $D \subseteq \{0, \ldots, n-1\}$

$$\left\{ \sum_{k=1}^{\infty} \frac{x_k}{n^k} : x_k \in D \right\}$$

In 2009 Shmerkin and Peres proved the Conjecture when X and Y are m-adic and n-adic Cantor sets, respectively. The proof relied on the work of Moreira, about sumsets of non-linear Cantor sets (1998).

Theorem (Hochman-Shmerkin, 2012)

The sum-set Conjecture holds true. In fact, for all $u \neq 0$

$$\dim_H (X + u \cdot Y) = \min\{\dim_H X + \dim_H Y, 1\}.$$
Furstenberg's Slicing Conjecture

Furstenberg's Slicing Conjecture (Furstenberg, 1969)

Let X, Y be closed sets that are invariant under T^m and T^n, respectively. If $m \not\sim n$ then for any line ℓ not parallel to the major axes $\dim H_\ell \cap (X \times Y) \leq \max\{\dim H_X + \dim H_Y - 1, 0\}$.

If the sumset $X + Y$ is "large" then "many" fibers $\ell_z = \{(x, y) : x \in X, y \in Y, x + y = z\}$ should be small, and vice versa. So (Sumset Conjecture) \(\iff\) (Slicing Conjecture).

In fact, (Slicing Conjecture) \(\implies\) (Sumset Conjecture).
Furstenberg’s Slicing Conjecture

Conjecture (Furstenberg, 1969)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively.
Furstenberg’s Slicing Conjecture

Conjecture (Furstenberg, 1969)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then for any line ℓ not parallel to the major axes

$$\dim_H \ell \cap (X \times Y) \leq \max\{\dim_H X + \dim_H Y - 1, 0\}. \quad (2)$$
Furstenberg’s Slicing Conjecture

Conjecture (Furstenberg, 1969)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then for any line ℓ not parallel to the major axes

$$\dim_H \ell \cap (X \times Y) \leq \max\{\dim_H X + \dim_H Y - 1, 0\}. \quad (2)$$

If the sumset $X + Y$ is ”large” then ”many” fibers

$$\ell_z = \{(x, y) : x \in X, y \in Y, x + y = z\}$$

should be small, and vice versa.
Furstenberg’s Slicing Conjecture

Conjecture (Furstenberg, 1969)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then for any line ℓ not parallel to the major axes

$$\dim_H \ell \cap (X \times Y) \leq \max\{\dim_H X + \dim_H Y - 1, 0\}.$$ \hspace{1cm} (2)

If the sumset $X + Y$ is "large" then "many" fibers

$$\ell_z = \{(x, y) : x \in X, y \in Y, x + y = z\}$$

should be small, and vice versa.
Furstenberg’s Slicing Conjecture

Conjecture (Furstenberg, 1969)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then for any line ℓ not parallel to the major axes

$$\dim H \ell \cap (X \times Y) \leq \max\{\dim H X + \dim H Y - 1, 0\}.$$ \hspace{1cm} (2)

If the sumset $X + Y$ is "large" then "many" fibers

$$\ell_z = \{(x, y) : x \in X, y \in Y, x + y = z\}$$

should be small, and vice versa. So (Sumset Conjecture) " \iff " (Slicing Conjecture).
Furstenberg’s Slicing Conjecture

Conjecture (Furstenberg, 1969)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then for any line ℓ not parallel to the major axes

$$\dim_H \ell \cap (X \times Y) \leq \max\{\dim_H X + \dim_H Y - 1, 0\}. \quad (2)$$

If the sumset $X + Y$ is "large" then "many" fibers

$$\ell_z = \{(x, y) : x \in X, y \in Y, x + y = z\}$$

should be small, and vice versa. So (Sumset Conjecture) " \iff " (Slicing Conjecture). In fact, (Slicing Conjecture) \Rightarrow (Sumset Conjecture).
Sum-set versus slice
Furstenberg’s Slicing Conjecture

Furstenberg's Slicing Conjecture and our new results
A few words about the proofs

Furstenberg's Slicing Conjecture

By Marstrand's slicing Theorem (1954) for all $X \subseteq \mathbb{R}^2$ and any line with fixed slope u, for almost every intercept t

$$\dim H X \cap \ell_{u,t} \leq \max \{ \dim H X - 1, 0 \}$$

This fails for any value smaller than the RHS of (3).

It is well known that for sets X and Y as in the Conjecture

$$\dim H X \times Y = \dim H X + \dim H Y$$

So, what Furstenberg Conjectured is that for $X = X_1 \times X_2$ as in the Conjecture, Marstrand's Theorem holds for all lines not parallel to the major axes.

In particular, a slice that violates (3) can be seen as some shared structure between X and Y.

Amir Algom

Furstenberg-Marstrand slicing Theorems for $(\times m, \times n)$ invariant sets
Furstenberg’s Slicing Conjecture

1. By Marstrand’s slicing Theorem (1954)

By Marstrand’s slicing Theorem (1954)
Furstenberg’s Slicing Conjecture

By Marstrand’s slicing Theorem (1954) for all $X \subseteq \mathbb{R}^2$ and any line with fixed slope u, for almost every intercept t

$$\dim_H X \cap \ell_{u,t} \leq \max\{\dim_H X - 1, 0\} \quad (3)$$
Furstenberg’s Slicing Conjecture

By Marstrand’s slicing Theorem (1954) for all $X \subseteq \mathbb{R}^2$ and any line with fixed slope u, for almost every intercept t

$$\dim_H X \cap \ell_{u,t} \leq \max\{\dim_H X - 1, 0\}$$ \hspace{1cm} (3)

This fails for any value smaller than the RHS of (3).
1. By Marstrand’s slicing Theorem (1954) for all $X \subseteq \mathbb{R}^2$ and any line with fixed slope u, for almost every intercept t

$$\dim_H X \cap \ell_{u,t} \leq \max\{\dim_H X - 1, 0\} \quad (3)$$

This fails for any value smaller than the RHS of (3).

2. It is well known that for sets X and Y as in the Conjecture

$$\dim_H X \times Y = \dim_H X + \dim_H Y$$
Furstenberg’s Slicing Conjecture

1. By Marstrand’s slicing Theorem (1954) for all $X \subseteq \mathbb{R}^2$ and any line with fixed slope u, for almost every intercept t

$$\dim_H X \cap \ell_{u,t} \leq \max\{\dim_H X - 1, 0\}$$

(3)

This fails for any value smaller than the RHS of (3).

2. It is well known that for sets X and Y as in the Conjecture

$$\dim_H X \times Y = \dim_H X + \dim_H Y$$

So, what Furstenberg Conjectured is that for $X = X_1 \times X_2$ as in the Conjecture, Marstrand’s Theorem holds for all lines not parallel to the major axes.
Furstenberg’s Slicing Conjecture

1. By Marstrand’s slicing Theorem (1954) for all $X \subseteq \mathbb{R}^2$ and any line with fixed slope u, for almost every intercept t

$$\dim_H X \cap \ell_{u,t} \leq \max\{\dim_H X - 1, 0\} \quad (3)$$

This fails for any value smaller than the RHS of (3).

2. It is well known that for sets X and Y as in the Conjecture

$$\dim_H X \times Y = \dim_H X + \dim_H Y$$

So, what Furstenberg Conjectured is that for $X = X_1 \times X_2$ as in the Conjecture, Marstrand’s Theorem holds for all lines not parallel to the major axes.

In particular, a slice that violates (3) can be seen as some shared structure between X and Y.
Furstenberg's Slicing Conjecture and our new results

Some results towards slicing Conjecture

Furstenberg proved: fix ℓ_0 such that $\dim H_\ell \cap (X \times Y) \geq \alpha$, then for Lebesgue a.e. u there exists a t such that $\dim H_{\ell u,t} \cap (X \times Y) \geq \alpha$.

In 1996 Wolff proved that for every line ℓ not parallel to the axes $\dim H_\ell \cap (X \times Y) \leq \max\{\dim H_X + \dim H_Y - \frac{1}{2}, 0\}$.

In 2014, Feng Huang and Rao proved that for every such X,Y there is some (non-effective) $\delta = \delta(X,Y) > 0$ such that $\dim H_\ell \cap (X \times Y) \leq \min\{\dim X, \dim Y\} - \delta(X,Y)$.
Some results towards slicing Conjecture

1. Furstenberg proved: fix ℓ_0 such that $\dim_H \ell_0 \cap (X \times Y) \geq \alpha$.
Furstenberg's Conjectures

Furstenberg's Slicing Conjecture and our new results

A few words about the proofs

Some results towards slicing Conjecture

1. Furstenberg proved: fix ℓ_0 such that $\dim_H \ell_0 \cap (X \times Y) \geq \alpha$, then for Lebesgue a.e. u there exists a t such that $\dim_H \ell_{u,t} \cap (X \times Y) \geq \alpha$.

2. In 1996 Wolff proved that for every line ℓ not parallel to the axes $\dim_H \ell \cap (X \times Y) \leq \max \{\dim_H X, \dim_H Y - \frac{1}{2}, 0\}$.

3. In 2014, Feng Huang and Rao proved that for every such X,Y there is some (non-effective) $\delta = \delta(X,Y) > 0$ such that $\dim_H \ell \cap (X \times Y) \leq \min \{\dim X, \dim Y\} - \delta(X,Y)$.

Amir Algom

Furstenberg-Marstrand slicing Theorems for $(\times m, \times n)$ invariant sets
Some results towards slicing Conjecture

1. Furstenberg proved: fix ℓ_0 such that $\dim_H \ell_0 \cap (X \times Y) \geq \alpha$, then for Lebesgue a.e. u there exists a t such that $\dim_H \ell_{u,t} \cap (X \times Y) \geq \alpha$.

2. In 1996 Wolff proved that for every line ℓ not parallel to the axes

$$\dim_H \ell \cap (X \times Y) \leq \max\{\dim_H X + \dim_H Y - \frac{1}{2}, 0\}.$$
Some results towards slicing Conjecture

1. Furstenberg proved: fix ℓ_0 such that $\dim_H \ell_0 \cap (X \times Y) \geq \alpha$, then for Lebesgue a.e. u there exists a t such that $\dim_H \ell_{u,t} \cap (X \times Y) \geq \alpha$.

2. In 1996 Wolff proved that for every line ℓ not parallel to the axes

$$\dim_H \ell \cap (X \times Y) \leq \max\{\dim_H X + \dim_H Y - \frac{1}{2}, 0\}.$$

3. In 2014, Feng Huang and Rao proved that for every such X, Y there is some (non-effective) $\delta = \delta(X, Y) > 0$ such that

$$\dim_H \ell \cap (X \times Y) \leq \min\{\dim X, \dim Y\} - \delta(X, Y).$$
Resolution of the Conjecture and our results

Theorem (Shmerkin, Wu, 2016 - independently)
Let X, Y be closed sets that are invariant under T^m and T^n, respectively.
If $m \not\sim n$ then for any line ℓ not parallel to the major axes
$\dim B_\ell \cap (X \times Y) \leq \max\{\dim H(X \times Y) - 1, 0\}$.

We show that this holds for all closed $T^m \times T^n$ invariant sets:

Main Theorem (A. - Wu)
Let $\emptyset \neq X \subseteq [0, 1]^2$ be a closed $T^m \times T^n$ invariant set.
If $m \not\sim n$ then for every line ℓ not parallel to the major axes,
$\dim H_X \cap \ell \leq \max\{\dim H_X - 1, 0\}$.
Resolution of the Conjecture and our results

Theorem (Shmerkin, Wu, 2016 - independently)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively.
Resolution of the Conjecture and our results

Theorem (Shmerkin, Wu, 2016 - independently)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then for any line ℓ not parallel to the major axes

$$\overline{\dim}_{B} \ell \cap (X \times Y) \leq \max\{\dim_H (X \times Y) - 1, 0\}.$$
Resolution of the Conjecture and our results

Theorem (Shmerkin, Wu, 2016 - independently)

Let \(X, Y \) be closed sets that are invariant under \(T_m \) and \(T_n \), respectively. If \(m \not\sim n \) then for any line \(\ell \) not parallel to the major axes

\[
\dim B_\ell \cap (X \times Y) \leq \max\{\dim_H (X \times Y) - 1, 0\}.
\]

We show that this holds for all closed \(T_m \times T_n \) invariant sets:
Resolution of the Conjecture and our results

Theorem (Shmerkin, Wu, 2016 - independently)
Let \(X, Y \) be closed sets that are invariant under \(T_m \) and \(T_n \), respectively. If \(m \not\sim n \) then for any line \(\ell \) not parallel to the major axes

\[
\dim_B \ell \cap (X \times Y) \leq \max \{ \dim_H (X \times Y) - 1, 0 \}.
\]

We show that this holds for all closed \(T_m \times T_n \) invariant sets:

Main Theorem (A. - Wu)
Let \(\emptyset \neq X \subseteq [0, 1]^2 \) be a closed \(T_m \times T_n \) invariant set.
Resolution of the Conjecture and our results

Theorem (Shmerkin, Wu, 2016 - independently)

Let X, Y be closed sets that are invariant under T_m and T_n, respectively. If $m \not\sim n$ then for any line ℓ not parallel to the major axes

$$\dim_B \ell \cap (X \times Y) \leq \max\{\dim_H (X \times Y) - 1, 0\}.$$

We show that this holds for all closed $T_m \times T_n$ invariant sets:

Main Theorem (A. - Wu)

Let $\emptyset \neq X \subseteq [0, 1]^2$ be a closed $T_m \times T_n$ invariant set. If $m \not\sim n$ then for every line ℓ not parallel to the major axes,

$$\dim_H X \cap \ell \leq \max\{\dim_H X - 1, 0\}$$

Amir Algom
Bedford-McMullen carpets

Let $m, n \geq 2$ be integers. Let $\emptyset \neq D \subseteq \{0, ..., m-1\} \times \{0, ..., n-1\}$ and define $F = \{ (\sum_{k=1}^{\infty} x_k m^k, \sum_{k=1}^{\infty} y_k n^k) : (x_k, y_k) \in D \}$. F is a (Bedford-McMullen) carpet with defining exponents m, n and allowed digit set D. In 1984 Bedford and McMullen calculated their dimension. Warning: It is not true in general that $\dim_H F = \dim_B F$. But $\dim_B F = \dim_P F$ holds true.
let $m, n \geq 2$ be integers.
let \(m, n \geq 2 \) be integers. Let

\[\emptyset \neq D \subseteq \{0, ..., m-1\} \times \{0, ..., n-1\} \]
let \(m, n \geq 2 \) be integers. Let

\[
\emptyset \neq D \subseteq \{0, \ldots, m - 1\} \times \{0, \ldots, n - 1\}
\]

and define

\[
F = \left\{ \left(\sum_{k=1}^{\infty} \frac{x_k}{m^k}, \sum_{k=1}^{\infty} \frac{y_k}{n^k} \right) : (x_k, y_k) \in D \right\}.
\]
let $m, n \geq 2$ be integers. Let
\[\emptyset \neq D \subseteq \{0, \ldots, m-1\} \times \{0, \ldots, n-1\} \]
and define
\[F = \{ (\sum_{k=1}^{\infty} \frac{x_k}{m^k}, \sum_{k=1}^{\infty} \frac{y_k}{n^k}) : (x_k, y_k) \in D \}. \]
F is a (Bedford-McMullen) carpet with defining exponents m, n, and allowed digit set D.

Bedford-McMullen carpets

let $m, n \geq 2$ be integers. Let

$$\emptyset \neq D \subseteq \{0, \ldots, m - 1\} \times \{0, \ldots, n - 1\}$$

and define

$$F = \left\{ \left(\sum_{k=1}^{\infty} \frac{x_k}{m^k}, \sum_{k=1}^{\infty} \frac{y_k}{n^k} \right) : (x_k, y_k) \in D \right\}.$$

F is a (Bedford-McMullen) carpet with defining exponents m, n, and allowed digit set D.

In 1984 Bedford and McMullen calculated their dimension.
let \(m, n \geq 2 \) be integers. Let

\[
\emptyset \neq D \subseteq \{0, \ldots, m-1\} \times \{0, \ldots, n-1\}
\]

and define

\[
F = \left\{ \left(\sum_{k=1}^{\infty} \frac{x_k}{m^k}, \sum_{k=1}^{\infty} \frac{y_k}{n^k} \right) : (x_k, y_k) \in D \right\}.
\]

\(F \) is a (Bedford-McMullen) carpet with defining exponents \(m, n \), and allowed digit set \(D \).

In 1984 Bedford and McMullen calculated their dimension.

Warning It is not true in general that \(\dim_H F = \dim_B F \).
Bedford-McMullen carpets

let $m, n \geq 2$ be integers. Let

$$\emptyset \neq D \subseteq \{0, \ldots, m-1\} \times \{0, \ldots, n-1\}$$

and define

$$F = \left\{ \left(\sum_{k=1}^{\infty} \frac{x_k}{m^k}, \sum_{k=1}^{\infty} \frac{y_k}{n^k} \right) : (x_k, y_k) \in D \right\}.$$

F is a (Bedford-McMullen) carpet with defining exponents $m, n,$ and allowed digit set D.

In 1984 Bedford and McMullen calculated their dimension. **Warning** It is not true in general that $\dim_H F = \dim_B F$. But $\dim_B F = \dim_P F$ holds true.
The Hironaka Curve

\[D = \{(0,1,1),(1,1,0)\} \]

\[p_0 = 700,000 \]

\[p_1 = 713 \]

\[m = 2 \]

\[n = 3 \]

\[\text{dim}_m F = \log_2(1 + 1 + \frac{1}{2}) = 1 + \log_2(2) = 1 + \log_3(2) = 1.585 \]
Past work on Slicing Theorems for carpets

Let $\Pi_2: \mathbb{R}^2 \to \mathbb{R}$ denote the projection $\Pi_2(x,y) = y$. For every $j \in \Pi_2(D)$, let $D_j = \{0 \leq i \leq m - 1 : (i,j) \in D\}$.

Theorem (A. 2018)

Let F be a carpet with exponents m,n and digits D. If $m \not\sim n$ and for all i,j we have $|D_j| = |D_i|$, then for any non-principal line ℓ $\dim B(\ell \cap F) \leq \max\{\dim H F - 1, 0\}$.

The proof also gives a bound when $|D_j| \neq |D_i|$.

The condition $|D_j| = |D_i|$ holds when F is a product set of m-adic and n-adic Cantor sets. Thus, this generalises the result of Wu, that proved the slicing Conjecture.
Past work on Slicing Theorems for carpets

Let $\Pi_2 : \mathbb{R}^2 \rightarrow \mathbb{R}$ denote the projection $\Pi_2(x, y) = y$.

For every $j \in \Pi_2(D)$ let $D_j = \{0 \leq i \leq m-1 : (i, j) \in D\}$.

Theorem (A. 2018)

Let F be a carpet with exponents m, n and digits D. If $m \not\sim n$ and for all i, j we have $|D_j| = |D_i|$, then for any non-principal line ℓ $\dim B(\ell \cap F) \leq \max\{\dim H F - 1, 0\}$.

The proof also gives a bound when $|D_j| \not= |D_i|$. The condition $|D_j| = |D_i|$ holds when F is a product set of m-adic and n-adic Cantor sets. Thus, this generalises the result of Wu, that proved the slicing Conjecture.
Past work on Slicing Theorems for carpets

Let $\Pi_2 : \mathbb{R}^2 \to \mathbb{R}$ denote the projection $\Pi_2(x, y) = y$. For every $j \in \Pi_2(D)$ let $D_j = \{0 \leq i \leq m - 1 : (i, j) \in D\}$.
Past work on Slicing Theorems for carpets

Let $\Pi_2 : \mathbb{R}^2 \to \mathbb{R}$ denote the projection $\Pi_2(x, y) = y$. For every $j \in \Pi_2(D)$ let $D_j = \{0 \leq i \leq m - 1 : (i, j) \in D\}$

Theorem (A. 2018)

Let F be a carpet with exponents m, n and digits D. If $m \not\sim n$ and for all i, j we have $|D_j| = |D_i|$, then for any non-principal line ℓ $\dim B(\ell \cap F) \leq \max\{\dim H F - 1, 0\}$.

The proof also gives a bound when $|D_j| \neq |D_i|$. The condition $|D_j| = |D_i|$ holds when F is a product set of m-adic and n-adic Cantor sets. Thus, this generalises the result of Wu, that proved the slicing Conjecture.
Past work on Slicing Theorems for carpets

Let $\Pi_2 : \mathbb{R}^2 \to \mathbb{R}$ denote the projection $\Pi_2(x, y) = y$.
For every $j \in \Pi_2(D)$ let $D_j = \{0 \leq i \leq m - 1 : (i, j) \in D\}$

Theorem (A. 2018)

Let F be a carpet with exponents m, n and digits D. If $m \not\sim n$ and for all i, j we have $|D_j| = |D_i|$, then for any non-principal line ℓ

$$\overline{\dim}_B (\ell \cap F) \leq \max\{\dim_H F - 1, 0\}$$
Let $\Pi_2 : \mathbb{R}^2 \to \mathbb{R}$ denote the projection $\Pi_2(x, y) = y$.

For every $j \in \Pi_2(D)$ let $D_j = \{0 \leq i \leq m - 1 : (i, j) \in D\}$

Theorem (A. 2018)

Let F be a carpet with exponents m, n and digits D. If $m \not\sim n$ and for all i, j we have $|D_j| = |D_i|$, then for any non-principal line ℓ

$$\dim_B(\ell \cap F) \leq \max\{\dim_H F - 1, 0\}$$

1. The proof also gives a bound when $|D_j| \neq |D_i|$.
Past work on Slicing Theorems for carpets

Let $\Pi_2 : \mathbb{R}^2 \to \mathbb{R}$ denote the projection $\Pi_2(x, y) = y$.

For every $j \in \Pi_2(D)$ let $D_j = \{0 \leq i \leq m - 1 : (i, j) \in D\}$

Theorem (A. 2018)

Let F be a carpet with exponents m, n and digits D. If $m \not\sim n$ and for all i, j we have $|D_j| = |D_i|$, then for any non-principal line ℓ

$$\dim_B (\ell \cap F) \leq \max\{\dim_H F - 1, 0\}$$

1. The proof also gives a bound when $|D_j| \neq |D_i|$.
2. The condition $|D_j| = |D_i|$ holds when F is a product set of m-adic and n-adic Cantor sets.
Past work on Slicing Theorems for carpets

Let $\Pi_2 : \mathbb{R}^2 \to \mathbb{R}$ denote the projection $\Pi_2(x, y) = y$. For every $j \in \Pi_2(D)$ let $D_j = \{0 \leq i \leq m - 1 : (i, j) \in D\}$

Theorem (A. 2018)

Let F be a carpet with exponents m, n and digits D. If $m \not\sim n$ and for all i, j we have $|D_j| = |D_i|$, then for any non-principal line ℓ

$$\dim_B(\ell \cap F) \leq \max\{\dim_H F - 1, 0\}$$

1. The proof also gives a bound when $|D_j| \neq |D_i|$.
2. The condition $|D_j| = |D_i|$ holds when F is a product set of m-adic and n-adic Cantor sets. Thus, this generalises the result of Wu, that proved the slicing Conjecture.
Optimal Slicing Theorems for carpets

Theorem (A. - Wu)

Let F be a Bedford-McMullen carpet with exponents (m,n). If $m \not\sim n$ then for any non principal line ℓ,

\[\dim H F \cap \ell \leq \max\{ \dim H F - 1, 0 \} \]

\[\dim P F \cap \ell \leq \max\{ \dim P F - 1, 0 \} \]

Formally, our main Theorem implies part (1) above, since Bedford-McMullen carpets are always closed $T_m \times T_n$ invariant sets. However, our main result follows as a Corollary of this Theorem. Both bounds are optimal. Moreover, if $\dim P F > \dim H F > 1$ then for any slope $u \not= 0$ there exists t such that:

\[\dim B(F \cap \ell, u, t) > \dim H F - 1 \]
Furstenberg's \(\times 2, \times 3\) type Conjectures
Furstenberg's Slicing Conjecture and our new results
A few words about the proofs

Optimal Slicing Theorems for carpets

Theorem (A. - Wu)

Let \(F\) be a Bedford-McMullen carpet with exponents \((m, n)\).
Optimal Slicing Theorems for carpets

Theorem (A. - Wu)

Let F be a Bedford-McMullen carpet with exponents (m, n). If $m \not\sim n$ then for any non principal line ℓ,

1. $\dim_H F \cap \ell \leq \max\{\dim_H F - 1, 0\}$.
Theorem (A. - Wu)

Let F be a Bedford-McMullen carpet with exponents (m, n). If $m \not\sim n$ then for any non principal line ℓ,

1. $\dim_H F \cap \ell \leq \max\{\dim_H F - 1, 0\}$.
2. $\dim_P F \cap \ell \leq \max\{\dim_P F - 1, 0\}$.
Optimal Slicing Theorems for carpets

Theorem (A. - Wu)

Let F be a Bedford-McMullen carpet with exponents (m, n). If $m \not\sim n$ then for any non principal line ℓ,

1. $\dim_H F \cap \ell \leq \max\{\dim_H F - 1, 0\}$.
2. $\dim_P F \cap \ell \leq \max\{\dim_P F - 1, 0\}$.

Formally, our main Theorem implies part (1) above, since Bedford-McMullen carpets are always closed $T_m \times T_n$ invariant sets.
Furstenberg’s $\times 2, \times 3$ type Conjectures
Furstenberg’s Slicing Conjecture and our new results
A few words about the proofs

Optimal Slicing Theorems for carpets

Theorem (A. - Wu)

Let F be a Bedford-McMullen carpet with exponents (m, n). If $m \not\sim n$ then for any non principal line ℓ,

1. $\dim_H F \cap \ell \leq \max\{\dim_H F - 1, 0\}$.
2. $\dim_P F \cap \ell \leq \max\{\dim_P F - 1, 0\}$.

Formally, our main Theorem implies part (1) above, since Bedford-McMullen carpets are always closed $T_m \times T_n$ invariant sets. However, our main result follows as a Corollary of this Theorem.
Optimal Slicing Theorems for carpets

Theorem (A. - Wu)

Let F be a Bedford-McMullen carpet with exponents (m, n). If $m \not\sim n$ then for any non principal line ℓ,

1. $\dim_H F \cap \ell \leq \max\{\dim_H F - 1, 0\}$.
2. $\dim_P F \cap \ell \leq \max\{\dim_P F - 1, 0\}$.

Formally, our main Theorem implies part (1) above, since Bedford-McMullen carpets are always closed $T_m \times T_n$ invariant sets. However, our main result follows as a Corollary of this Theorem.

Both bounds are optimal.
Optimal Slicing Theorems for carpets

Theorem (A. - Wu)

Let F be a Bedford-McMullen carpet with exponents (m, n). If $m \not\sim n$ then for any non principal line ℓ,

1. $\dim_H F \cap \ell \leq \max\{\dim_H F - 1, 0\}$.
2. $\dim_P F \cap \ell \leq \max\{\dim_P F - 1, 0\}$.

Formally, our main Theorem implies part (1) above, since Bedford-McMullen carpets are always closed $T_m \times T_n$ invariant sets. However, our main result follows as a Corollary of this Theorem.

Both bounds are optimal. Moreover, if $\dim_P F > \dim_H F > 1$ then for any slope $u \neq 0$ there exists t such that:

$$\overline{\dim}_B(F \cap \ell_{u,t}) > \dim_H F - 1$$
Slicing for carpets implies main result
Slicing for carpets implies main result

Let $X \subseteq [0, 1]^2$ be a closed $T_m \times T_n$ invariant set, where $m \not\sim n$.
Let $X \subseteq [0, 1]^2$ be a closed $T_m \times T_n$ invariant set, where $m \not\sim n$. Let $\ell_0 \subset \mathbb{R}^2$ be a line that is not parallel to the major axes.
Slicing for carpets implies main result

Let $X \subseteq [0, 1]^2$ be a closed $T_m \times T_n$ invariant set, where $m \not\sim n$. Let $\ell_0 \subseteq \mathbb{R}^2$ be a line that is not parallel to the major axes. We want

$$\dim_H X \cap \ell_0 \leq \max\{\dim_H X - 1, 0\}$$
Let $X \subseteq [0, 1]^2$ be a closed $T_m \times T_n$ invariant set, where $m \not\sim n$. Let $\ell_0 \subset \mathbb{R}^2$ be a line that is not parallel to the major axes. We want

$$\dim_H X \cap \ell_0 \leq \max\{\dim_H X - 1, 0\}$$

For every $k \in \mathbb{N}$ let D_k be the set of all words of length k that appear in the subshift corresponding to X.
Slicing for carpets implies main result

Let $X \subseteq [0, 1]^2$ be a closed $T_m \times T_n$ invariant set, where $m \not\sim n$. Let $\ell_0 \subseteq \mathbb{R}^2$ be a line that is not parallel to the major axes. We want

$$\dim_H X \cap \ell_0 \leq \max\{\dim_H X - 1, 0\}$$

For every $k \in \mathbb{N}$ let D_k be the set of all words of length k that appear in the subshift corresponding to X. Let F_k be the carpet with digits D_k and the exponents m^k, n^k.

A few words about the proofs

Slicing for carpets implies main result
Let $X \subseteq [0,1]^2$ be a closed $T_m \times T_n$ invariant set, where $m \not\sim n$. Let $\ell_0 \subset \mathbb{R}^2$ be a line that is not parallel to the major axes. We want

$$\dim_H X \cap \ell_0 \leq \max\{\dim_H X - 1, 0\}$$

For every $k \in \mathbb{N}$ let D_k be the set of all words of length k that appear in the subshift corresponding to X. Let F_k be the carpet with digits D_k and the exponents m^k, n^k. Note that for every $k \in \mathbb{N}$ we have $X \subseteq F_k$.
A few words about the proofs

Theorem (Kenyon-Peres, 1996)

\[\lim_{k \to \infty} \dim H_{F_k} = \dim H_X. \]

By the slicing Theorem for carpets, which applies since

\[m_k \not\sim n_k \]

for all \(k \),

\[\dim H_X \cap \ell_0 \leq \dim H_{F_k} \cap \ell_0 \leq \max\{\dim H_{F_k} - 1, 0\} \]

and by Theorem of Kenyon and Peres

\[\max\{\dim H_{F_k} - 1, 0\} \to \max\{\dim H_X - 1, 0\} \]

which concludes the proof.
Theorem (Kenyon-Peres, 1996)

We have $\lim_{k \to \infty} \dim_H F_k = \dim_H X$.

Theorem (Kenyon-Peres, 1996)

We have $\lim_{k \to \infty} \dim_H F_k = \dim_H X$.

By the slicing Theorem for carpets, which applies since $m^k \not\sim n^k$ for all k,

\[\dim_H X \cap \ell_0 \leq \dim_H F_k \cap \ell_0 \leq \max \{ \dim_H F_k - 1, 0 \} \]

and by Theorem of Kenyon and Peres

\[\max \{ \dim_H F_k - 1, 0 \} \to \max \{ \dim_H X - 1, 0 \} \]

which concludes the proof.
Furstenberg’s $\times 2, \times 3$ type Conjectures
Furstenberg’s Slicing Conjecture and our new results
A few words about the proofs

Theorem (Kenyon-Peres, 1996)
We have $\lim_{k \to \infty} \dim_H F_k = \dim_H X$.

By the slicing Theorem for carpets, which applies since $m^k \not\sim n^k$ for all k,

$$\dim_H X \cap \ell_0 \leq \dim_H F_k \cap \ell_0$$
Theorem (Kenyon-Peres, 1996)

We have \(\lim_{k \to \infty} \dim_H F_k = \dim_H X \).

By the slicing Theorem for carpets, which applies since \(m^k \not\sim n^k \) for all \(k \),

\[
\dim_H X \cap \ell_0 \leq \dim_H F_k \cap \ell_0 \\
\leq \max\{\dim_H F_k - 1, 0\}
\]
Theorem (Kenyon-Peres, 1996)

We have $\lim_{k \to \infty} \dim_H F_k = \dim_H X$.

By the slicing Theorem for carpets, which applies since $m^k \not\sim n^k$ for all k,

$$\dim_H X \cap \ell_0 \leq \dim_H F_k \cap \ell_0 \leq \max\{\dim_H F_k - 1, 0\}$$

and by Theorem of Kenyon and Peres

$$\max\{\dim_H F_k - 1, 0\} \to \max\{\dim_H X - 1, 0\}$$

which concludes the proof.
On the proof of the slicing Theorem for carpets

Fix a carpet F with digit set D and exponents $m \not\sim n$.
We always assume that $m > n$ so
$\theta := \log n / \log m \not\in \mathbb{Q}$ is in $(0, 1)$.

Let $\ell_0 \subseteq \mathbb{R}^2$ be a line with slope $m u_0$ where $u_0 \in [0, 1)$.
We want to bound $\dim H F \cap \ell_0$.
For every $u \in T := \mathbb{R} / \mathbb{Z}$, we define a map $\Phi_u : [0, 1]^2 \to [0, 1]^2$ by

$$\Phi_u(x, y) = \begin{cases}
(T m(x), T n(y)) & \text{if } u \in [1 - \theta, 1) \\
(x, T n(y)) & \text{if } u \in [0, 1 - \theta)
\end{cases}$$

So $\Phi_k u(x, y) \approx (T \lfloor k \cdot \theta \rfloor m(x), T k n(y))$.

Let $R_\theta : T \to T$ be translation by θ, $R_\theta(t) = t + \theta \mod 1$.
Notice that $\Phi_{u_0}(F \cap \ell_0)$ is a union of finitely many lines,
each with slope $m R_\theta(u_0)$ and at least one with dimension $\geq \dim F \cap \ell_0$.
Fix a carpet F with digit set D and exponents $m \not\sim n$.
On the proof of the slicing Theorem for carpets

Fix a carpet F with digit set D and exponents $m \not\sim n$. We always assume that $m > n$ so $\theta := \frac{\log n}{\log m} \not\in \mathbb{Q}$ is in $(0, 1)$.

Amir Algom
Fix a carpet F with digit set D and exponents $m \not\sim n$. We always assume that $m > n$ so $\theta := \frac{\log n}{\log m} \notin \mathbb{Q}$ is in $(0, 1)$. Let $\ell_0 \subseteq \mathbb{R}^2$ be a line with slope m^{u_0} where $u_0 \in [0, 1)$.

On the proof of the slicing Theorem for carpets

Fix a carpet F with digit set D and exponents $m \not\sim n$. We always assume that $m > n$ so $\theta := \frac{\log n}{\log m} \not\in \mathbb{Q}$ is in $(0, 1)$. Let $\ell_0 \subseteq \mathbb{R}^2$ be a line with slope m^{u_0} where $u_0 \in [0, 1)$. We want to bound $\dim_H F \cap \ell_0$.
Fix a carpet F with digit set D and exponents $m \not\sim n$. We always assume that $m > n$ so $\theta := \frac{\log n}{\log m} \notin \mathbb{Q}$ is in $(0, 1)$.

Let $\ell_0 \subseteq \mathbb{R}^2$ be a line with slope m^{u_0} where $u_0 \in [0, 1)$. We want to bound $\dim_H F \cap \ell_0$.

For every $u \in \mathbb{T} := \mathbb{R}/\mathbb{Z}$, we define a map $\Phi_u : [0, 1]^2 \to [0, 1]^2$, by

$$
\Phi_u(x, y) = \begin{cases}
(T_m(x), T_n(y)) & \text{if } u \in [1 - \theta, 1) \\
& \text{otherwise}
\end{cases}
$$
Fix a carpet F with digit set D and exponents $m \not\sim n$. We always assume that $m > n$ so $\theta := \frac{\log n}{\log m} \not\in \mathbb{Q}$ is in $(0, 1)$. Let $\ell_0 \subseteq \mathbb{R}^2$ be a line with slope m^{u_0} where $u_0 \in [0, 1)$. We want to bound $\dim_H F \cap \ell_0$.

For every $u \in \mathbb{T} := \mathbb{R}/\mathbb{Z}$, we define a map $\Phi_u : [0, 1]^2 \to [0, 1]^2$, by

$$
\Phi_u(x, y) = \begin{cases}
(T_m(x), T_n(y)) & \text{if } u \in [1 - \theta, 1) \\
(x, T_n(y)) & \text{if } u \in [0, 1 - \theta)
\end{cases}
$$
Fix a carpet F with digit set D and exponents $m \not\sim n$. We always assume that $m > n$ so $\theta := \frac{\log n}{\log m} \notin \mathbb{Q}$ is in $(0, 1)$. Let $\ell_0 \subseteq \mathbb{R}^2$ be a line with slope m^{u_0} where $u_0 \in [0, 1)$. We want to bound $\dim_H F \cap \ell_0$.

For every $u \in \mathbb{T} := \mathbb{R}/\mathbb{Z}$, we define a map $\Phi_u : [0, 1]^2 \to [0, 1]^2$, by

$$
\Phi_u(x, y) = \begin{cases}
(T_m(x), T_n(y)) & \text{if } u \in [1 - \theta, 1) \\
(x, T_n(y)) & \text{if } u \in [0, 1 - \theta)
\end{cases}
$$

So $\Phi^k_u(x, y) \approx \left(T_{[k \cdot \theta]}^k(x), T_n^k(y)\right)$.

On the proof of the slicing Theorem for carpets

Fix a carpet F with digit set D and exponents $m \not\sim n$. We always assume that $m > n$ so $\theta := \frac{\log n}{\log m} \not\in \mathbb{Q}$ is in $(0, 1)$. Let $\ell_0 \subseteq \mathbb{R}^2$ be a line with slope m^{u_0} where $u_0 \in [0, 1)$. We want to bound $\dim_H F \cap \ell_0$.

For every $u \in \mathbb{T} := \mathbb{R}/\mathbb{Z}$, we define a map $\Phi_u : [0, 1]^2 \to [0, 1]^2$, by

$$\Phi_u(x, y) = \begin{cases} (T_m(x), T_n(y)) & \text{if } u \in [1 - \theta, 1) \\ (x, T_n(y)) & \text{if } u \in [0, 1 - \theta) \end{cases}$$

So $\Phi_u^k(x, y) \approx \left(T_m^{[k \cdot \theta]}(x), T_n^k(y)\right)$. Let $R_\theta : \mathbb{T} \to \mathbb{T}$ be translation by θ, $R_\theta(t) = t + \theta \mod 1$.

On the proof of the slicing Theorem for carpets

Fix a carpet F with digit set D and exponents $m \not\sim n$. We always assume that $m > n$ so $\theta := \frac{\log n}{\log m} \not\in \mathbb{Q}$ is in $(0, 1)$. Let $\ell_0 \subseteq \mathbb{R}^2$ be a line with slope m^{u_0} where $u_0 \in [0, 1)$. We want to bound $\text{dim}_H F \cap \ell_0$.

For every $u \in \mathbb{T} := \mathbb{R}/\mathbb{Z}$, we define a map $\Phi_u : [0, 1]^2 \to [0, 1]^2$, by

$$
\Phi_u(x, y) = \begin{cases}
(T_m(x), T_n(y)) & \text{if } u \in [1 - \theta, 1) \\
(x, T_n(y)) & \text{if } u \in [0, 1 - \theta)
\end{cases}
$$

So $\Phi^k_u(x, y) \approx \left(T_m^{[k \cdot \theta]}(x), T_n^k(y) \right)$. Let $R_\theta : \mathbb{T} \to \mathbb{T}$ be translation by θ, $R_\theta(t) = t + \theta \mod 1$. Notice that $\Phi_{u_0}(F \cap \ell_0)$ is a union of finitely many lines,
On the proof of the slicing Theorem for carpets

Fix a carpet F with digit set D and exponents $m \not\sim n$. We always assume that $m > n$ so $\theta := \frac{\log n}{\log m} \not\in \mathbb{Q}$ is in $(0, 1)$. Let $\ell_0 \subseteq \mathbb{R}^2$ be a line with slope m^{u_0} where $u_0 \in [0, 1)$. We want to bound $\dim_H F \cap \ell_0$.

For every $u \in \mathbb{T} := \mathbb{R}/\mathbb{Z}$, we define a map $\Phi_u : [0, 1]^2 \to [0, 1]^2$, by

$$\Phi_u(x, y) = \begin{cases} (T_m(x), T_n(y)) & \text{if } u \in [1 - \theta, 1) \\ (x, T_n(y)) & \text{if } u \in [0, 1 - \theta) \end{cases}$$

So $\Phi_u^k(x, y) \approx \left(T_m^{[k \cdot \theta]}(x), T_n^k(y)\right)$. Let $R_\theta : \mathbb{T} \to \mathbb{T}$ be translation by θ, $R_\theta(t) = t + \theta \mod 1$. Notice that $\Phi_{u_0}(F \cap \ell_0)$ is a union of finitely many lines, each with slope $m^{R_\theta(u_0)}$.

Furstenberg's $\times 2, \times 3$ type Conjectures
Furstenberg's Slicing Conjecture and our new results
A few words about the proofs

Amir Algom

Furstenberg-Marstrand slicing Theorems for $(\times m, \times n)$ invariant sets
On the proof of the slicing Theorem for carpets

Fix a carpet F with digit set D and exponents $m \not\sim n$. We always assume that $m > n$ so $\theta := \frac{\log n}{\log m} \not\in \mathbb{Q}$ is in $(0, 1)$. Let $\ell_0 \subseteq \mathbb{R}^2$ be a line with slope m^{u_0} where $u_0 \in [0, 1)$. We want to bound $\dim_H F \cap \ell_0$.
For every $u \in \mathbb{T} := \mathbb{R}/\mathbb{Z}$, we define a map $\Phi_u : [0, 1]^2 \to [0, 1]^2$, by

$$
\Phi_u(x, y) = \begin{cases}
(T_m(x), T_n(y)) & \text{if } u \in [1 - \theta, 1) \\
(x, T_n(y)) & \text{if } u \in [0, 1 - \theta)
\end{cases}
$$

So $\Phi_u^k(x, y) \approx \left(T_m^{[k \cdot \theta]}(x), T_n^k(y)\right)$. Let $R_\theta : \mathbb{T} \to \mathbb{T}$ be translation by θ, $R_\theta(t) = t + \theta \mod 1$. Notice that $\Phi_{u_0}(F \cap \ell_0)$ is a union of finitely many lines, each with slope $m^{R_\theta(u_0)}$. And at least one with dimension $\geq \dim F \cap \ell_0$.

Amir Algom
On the proof of the slicing Theorem for carpets
For a measure μ on $[0, 1]^2, z = (x, y) \in \text{supp}(\mu)$ and $u \in \mathbb{T}$ we define a ”magnifying” map via
For a measure μ on $[0, 1]^2$, $z = (x, y) \in \text{supp}(\mu)$ and $u \in \mathbb{T}$ we define a "magnifying" map via

$$M(\mu, (x, y), u) = \begin{cases} (\mu^{D_m(x) \times D_n(y)}, \Phi_u(x, y), R_\theta(u)) & \text{if } u \in [1 - \theta, 1) \\ (\mu[^0,1] \times D_n(y), \Phi_u(x, y), R_\theta(u)) & \text{if } u \in [0, 1 - \theta) \end{cases}$$
For a measure \(\mu \) on \([0, 1]^2 \), \(z = (x, y) \in \text{supp}(\mu) \) and \(u \in \mathbb{T} \) we define a "magnifying" map via

\[
M(\mu, (x, y), u) = \begin{cases}
(\mu^{D_m(x)} \times D_n(y), \Phi_u(x, y), R_\theta(u)) & \text{if } u \in [1 - \theta, 1) \\
(\mu^{[0,1]} \times D_n(y), \Phi_u(x, y), R_\theta(u)) & \text{if } u \in [0, 1 - \theta)
\end{cases}
\]

where \(D_p(w) \) is the unique cell of the partition

\[
D_p = \left\{ \left[\frac{i}{p}, \frac{i + 1}{p} \right), \quad i \in \mathbb{Z} \right\}
\]

that contains \(w \).
On the proof of the slicing Theorem for carpets

For a measure μ on $[0, 1]^2, z = (x, y) \in \text{supp}(\mu)$ and $u \in \mathbb{T}$ we define a ”magnifying” map via

$$M(\mu, (x, y), u) = \begin{cases} (\mu^{D_m(x) \times D_n(y)}, \Phi_u(x, y), R_\theta(u)) & \text{if } u \in [1 - \theta, 1) \\ (\mu^{[0,1] \times D_n(y)}, \Phi_u(x, y), R_\theta(u)) & \text{if } u \in [0, 1 - \theta) \end{cases}$$

where $D_p(w)$ is the unique cell of the partition

$$D_p = \left\{ \left[\frac{i}{p}, \frac{i + 1}{p} \right), \quad i \in \mathbb{Z} \right\}$$

that contains w, and the measure $\mu^{D_m(x) \times D_n(y)}$ is the pushfoward via $T_m \times T_n$ of the conditional measure of μ on $D_m(x) \times D_n(y)$ ($\mu^{[0,1] \times D_n(y)}$ is defined similarly).
Furstenberg’s Slicing Conjecture and our new results

A few words about the proofs

Let \(\mu_0 \) be a measure on \(\ell_0 \cap F \) such that

\[
\dim \mu_0 := \inf \{ \dim H_A : \mu(A) > 0 \} \approx \dim \ell_0 \cap F
\]

and choose \((x_0, y_0) \sim \mu_0\).

Theorem (Furstenberg, 1969) - CP distributions

There exists a sequence \(N_j \) such that:

\[
\frac{N_j - 1}{\sum k=0} \delta M_k(\mu_0, (x_0, y_0), u_0) \to Q
\]

with

\[
\int (\dim \mu) dQ(\mu, z, u) \approx \dim \mu_0.
\]

Moreover, for \(Q \) almost every \((\mu, z, u)\) the measure \(\mu \) is supported on a line with slope \(m_u \) passing thorough the point \(z \).

Furthermore, \(u \) is distributed according to Lebesgue.
Let μ_0 be a measure on $\ell_0 \cap F$ such that

$$\dim \mu_0 := \inf \{ \dim H A : \mu(A) > 0 \} \approx \dim \ell_0 \cap F$$
Let μ_0 be a measure on $\ell_0 \cap F$ such that

$$\dim \mu_0 := \inf \{ \dim_H A : \mu(A) > 0 \} \approx \dim \ell_0 \cap F$$

and choose $(x_0, y_0) \sim \mu_0$.
Let \(\mu_0 \) be a measure on \(\ell_0 \cap F \) such that

\[
\dim \mu_0 := \inf \{ \dim_H A : \mu(A) > 0 \} \approx \dim \ell_0 \cap F
\]

and choose \((x_0, y_0) \sim \mu_0 \).

Theorem (Furstenberg, 1969) - CP distributions

There exists a sequence \(N_j \) such that:

\[
\frac{1}{N_j} \sum_{k=0}^{N_j-1} \delta_{M^k(\mu_0, (x_0, y_0), u_0)} \to Q
\]
Let μ_0 be a measure on $\ell_0 \cap F$ such that

$$\dim \mu_0 := \inf \{ \dim_H A : \mu(A) > 0 \} \approx \dim \ell_0 \cap F$$

and choose $(x_0, y_0) \sim \mu_0$.

Theorem (Furstenberg, 1969) - CP distributions

There exists a sequence N_j such that:

$$\frac{1}{N_j} \sum_{k=0}^{N_j-1} \delta_{M^k(\mu_0,(x_0,y_0),u_0)} \to Q$$

with $\int (\dim \mu) \, dQ(\mu, z, u) \approx \dim \mu_0$.
Let μ_0 be a measure on $\ell_0 \cap F$ such that

$$\dim \mu_0 := \inf \{ \dim_H A : \mu(A) > 0 \} \approx \dim \ell_0 \cap F$$

and choose $(x_0, y_0) \sim \mu_0$.

Theorem (Furstenberg, 1969) - CP distributions

There exists a sequence N_j such that:

$$\frac{1}{N_j} \sum_{k=0}^{N_j-1} \delta_{M^k(\mu_0,(x_0,y_0),u_0)} \to Q$$

with $\int (\dim \mu) \, dQ(\mu, z, u) \approx \dim \mu_0$. Moreover, for Q almost every (μ, z, u) the measure μ is supported on a line with slope m^u passing thorough the point z.
Let μ_0 be a measure on $\ell_0 \cap F$ such that

$$\dim \mu_0 := \inf \{ \dim_H A : \mu(A) > 0 \} \approx \dim \ell_0 \cap F$$

and choose $(x_0, y_0) \sim \mu_0$.

Theorem (Furstenberg, 1969) - CP distributions

There exists a sequence N_j such that:

$$\frac{1}{N_j} \sum_{k=0}^{N_j-1} \delta_{M^k(\mu_0, (x_0, y_0), u_0)} \rightarrow Q$$

with $\int (\dim \mu) dQ(\mu, z, u) \approx \dim \mu_0$. Moreover, for Q almost every (μ, z, u) the measure μ is supported on a line with slope m^u passing through the point z. Furthermore, u is distributed according to Lebesgue.
Let μ_0 be a measure on $\ell_0 \cap F$ such that

$$\dim \mu_0 := \inf \{\dim_H A : \mu(A) > 0\} \approx \dim \ell_0 \cap F$$

and choose $(x_0, y_0) \sim \mu_0$.

Theorem (Furstenberg, 1969) - CP distributions

There exists a sequence N_j such that:

$$\frac{1}{N_j} \sum_{k=0}^{N_j-1} \delta_{M^k(\mu_0,(x_0,y_0),u_0)} \to Q$$

with $\int (\dim \mu) dQ(\mu, z, u) \approx \dim \mu_0$. Moreover, for Q almost every (μ, z, u) the measure μ is supported on a line with slope m^u passing thorough the point z. Furthermore, u is distributed according to Lebesgue.
Furstenberg’s $\times 2, \times 3$ type Conjectures
Furstenberg’s Slicing Conjecture and our new results

A few words about the proofs

Crucial inequality

Consider the measures

\[\sum_{k=0}^{\delta_T} \delta_{T_k}(y_0) \rightarrow \nu, \]

and

\[\sum_{k=1}^{\delta_T} \delta_{T_k}(y_0) \rightarrow \rho.\]

Recall that

\[D_j = \{ 0 \leq i \leq m-1 : (i,j) \in D \}. \]

Theorem (A. - Wu)

We have

\[\int (\dim \mu) dQ(\mu) + 1 - o(1) \leq \sum_{j=0}^{n-1} \nu([j]_n, [j+1]_n) \log |D_j| \log m + h(\rho, T_n) \log n. \]

where the $o(1)$ error may be made arbitrarily small.

The RHS of (4) "can be shown" to be bounded above by

\[\dim H_{\text{Furstenberg-Marstrand}}. \]
Consider the measures \(\frac{1}{[\theta \cdot N_j]} \sum_{k=0}^{[\theta \cdot N_j]} \delta_{T_n^k(y_0)} \rightarrow \nu, \)
Crucial inequality

Consider the measures \(\frac{1}{[\theta \cdot N_j]} \sum_{k=0}^{[\theta \cdot N_j]} \delta_{T_n^k(y_0)} \rightarrow \nu \), and
\[
\frac{1}{N_j} \sum_{k=1}^{N_j} \delta_{T_n^k(y_0)} \rightarrow \rho
\]
Consider the measures \(\frac{1}{[\theta \cdot N_j]} \sum_{k=0}^{[\theta \cdot N_j]} \delta_{T_n^k(y_0)} \to \nu \), and
\[
\frac{1}{N_j} \sum_{k=1}^{N_j} \delta_{T_n^k(y_0)} \to \rho
\]
Recall that
\[
D_j = \{ 0 \leq i \leq m - 1 : (i, j) \in D \} \]
Furstenberg's $\times 2$, $\times 3$ type Conjectures
Furstenberg’s Slicing Conjecture and our new results
A few words about the proofs

Crucial inequality

Consider the measures $\frac{1}{[\theta \cdot N_j]} \sum_{k=0}^{[\theta \cdot N_j]} \delta_{T_n^k(y_0)} \to \nu$, and $\frac{1}{N_j} \sum_{k=1}^{N_j} \delta_{T_n^k(y_0)} \to \rho$ Recall that $D_j = \{0 \leq i \leq m - 1 : (i, j) \in D\}$

Theorem (A. - Wu)

We have

$$\int (\dim \mu) dQ(\mu) + 1 - o(1) \leq \frac{\sum_{j=0}^{n-1} \nu([\frac{j}{n}, \frac{j+1}{n}) \log |D_j|}{\log m} + \frac{h(\rho, T_n)}{\log n}$$

(4)

where the $o(1)$ error may be made arbitrarily small.
Consider the measures \(\frac{1}{[\theta \cdot N_j]} \sum_{k=0}^{\theta \cdot N_j} \delta_{T_n^k(y_0)} \rightarrow \nu \), and
\[
\frac{1}{N_j} \sum_{k=1}^{N_j} \delta_{T_n^k(y_0)} \rightarrow \rho \quad \text{Recall that}
\]
\[D_j = \{0 \leq i \leq m - 1 : (i, j) \in D\}\]

Theorem (A. - Wu)

We have
\[
\int (\dim \mu) \, dQ(\mu) + 1 - o(1) \leq \sum_{j=0}^{n-1} \nu([\frac{j}{n}, \frac{j+1}{n}]) \log |D_j| + \frac{h(\rho, T_n)}{\log n}
\]

where the \(o(1) \) error may be made arbitrarily small.

The RHS of (4) ”can be shown” to be bounded above by \(\dim_H F \),
Consider the measures \[\frac{1}{\theta \cdot N_j} \sum_{k=0}^{N_j} \delta_{T_n^k(y_0)} \to \nu, \text{ and} \]
\[\frac{1}{N_j} \sum_{k=1}^{N_j} \delta_{T_n^k(y_0)} \to \rho \]
Recall that
\[D_j = \{ 0 \leq i \leq m - 1 : (i, j) \in D \} \]

Theorem (A. - Wu)

We have
\[\int (\dim \mu) dQ(\mu) + 1 - o(1) \leq \sum_{j=0}^{n-1} \nu([\frac{j}{n}, \frac{j+1}{n}] \log |D_j| \leq + \frac{h(\rho, T_n)}{\log n} \]

where the \(o(1) \) error may be made arbitrarily small.

The RHS of (4) "can be shown" to be bounded above by \(\dim_H F \),
Motivation behind crucial inequality
Consider $M^k(\mu_0, (x_0, y_0), u_0)$.
Motivation behind crucial inequality

Consider $M^k(\mu_0, (x_0, y_0), u_0)$. Then a product structure begins to emerge in the support of the measure component in a *quantitative* manner.
Consider $M^k(\mu_0, (x_0, y_0), u_0)$. Then a product structure begins to emerge in the support of the measure component in a quantitative manner. Namely, assuming $u_0 = 0$, for every $k \in \mathbb{N}$, the set

$$\Pi_1$$

of the support of the measure component of $M^k(\mu_0, z_0, u_0)$
Motivation behind crucial inequality

Consider $M^k(\mu_0, (x_0, y_0), u_0)$. Then a product structure begins to emerge in the support of the measure component in a *quantitative* manner. Namely, assuming $u_0 = 0$, for every $k \in \mathbb{N}$, the set

$$\Pi_1$$

of the support of the measure component of $M^k(\mu_0, z_0, u_0)$ is contained in the set

$$\left\{ \sum_{i=1}^{\infty} \frac{b_i}{m^i} : b_i \in \{0, \ldots, m - 1\} \right\}$$
Motivation behind crucial inequality

Consider $M^k(\mu_0, (x_0, y_0), u_0)$. Then a product structure begins to emerge in the support of the measure component in a *quantitative* manner. Namely, assuming $u_0 = 0$, for every $k \in \mathbb{N}$, the set

$$\Pi_1$$

of the support of the measure component of $M^k(\mu_0, z_0, u_0)$ is contained in the set

$$\left\{ \sum_{i=1}^{\infty} \frac{b_i}{m^i} : b_i \in \{0, \ldots, m - 1\} \text{ and for } 1 \leq i \leq n_k, b_i \in D_{T^{i+[k\theta]}_n}(y_0) \right\}$$
Consider $M^k(\mu_0, (x_0, y_0), u_0)$. Then a product structure begins to emerge in the support of the measure component in a \textit{quantitative} manner. Namely, assuming $u_0 = 0$, for every $k \in \mathbb{N}$, the set

$$ \Pi_1$$

of the support of the measure component of $M^k(\mu_0, z_0, u_0)$ is contained in the set

$$ \left\{ \sum_{i=1}^{\infty} \frac{b_i}{m^i} : b_i \in \{0, \ldots, m - 1\} \text{ and for } 1 \leq i \leq n_k, b_i \in D_{T_n^{i+[k\theta]}}(y_0) \right\}$$

and $n_k \to \infty$ as $k \to \infty$.
Motivation behind crucial inequality

For $y = \sum_{k=1}^{\infty} y_k n_k$, $y_k \in \Pi_2(D)$ define $A(y) = \{\sum_{i=1}^{\infty} b_i m_i: b_i \in D, y_i\}$. Morally, for Q-a.e. (μ, z, u):

1. μ is supported on a line with slope m_u passing through the point z.
2. $\int (\dim \mu) dQ(\mu) \approx \dim \mu_0 \approx \dim \ell_0 \cap F$.
3. μ is supported on a product set $A(y) \times \Pi_2(F)$ with $y \sim \nu$ and $\Pi_2 \mu$ can be related to ρ.
Motivation behind crucial inequality

For \(y = \sum_{k=1}^{\infty} \frac{y_k}{n_k}, y_k \in \Pi_2(D) \) define

\[
A(y) = \left\{ \sum_{i=1}^{\infty} \frac{b_i}{m^i} : b_i \in D_{y_i} \right\}
\]
For \(y = \sum_{k=1}^{\infty} \frac{y_k}{n^k}, y_k \in \Pi_2(D) \) define

\[
A(y) = \left\{ \sum_{i=1}^{\infty} \frac{b_i}{m_i} : b_i \in D y_i \right\}
\]

Morally, for \(Q \) a.e. \((\mu, z, u)\):
Motivation behind crucial inequality

For \(y = \sum_{k=1}^{\infty} \frac{y_k}{n^k} , y_k \in \Pi_2(D) \) define

\[
A(y) = \left\{ \sum_{i=1}^{\infty} \frac{b_i}{m^i} : b_i \in D y_i \right\}
\]

Morally, for \(Q \) a.e. \((\mu, z, u)\):

1. \(\mu \) is supported on a line with slope \(m^u \) passing thorough the point \(z \).
Motivation behind crucial inequality

For \(y = \sum_{k=1}^{\infty} \frac{y_k}{n_k} \), \(y_k \in \Pi_2(D) \) define

\[
A(y) = \left\{ \sum_{i=1}^{\infty} \frac{b_i}{m^i} : b_i \in D y_i \right\}
\]

Morally, for \(Q \) a.e. \((\mu, z, u) \):

1. \(\mu \) is supported on a line with slope \(m^u \) passing thorough the point \(z \).
2. \(\int (\dim \mu) \, dQ(\mu) \approx \dim \mu_0 \approx \dim \ell_0 \cap F \).
Motivation behind crucial inequality

For \(y = \sum_{k=1}^{\infty} \frac{y_k}{n^k}, y_k \in \Pi_2(D) \) define

\[
A(y) = \left\{ \sum_{i=1}^{\infty} \frac{b_i}{m^i} : b_i \in D y_i \right\}
\]

Morally, for \(Q \) a.e. \((\mu, z, u)\):

1. \(\mu \) is supported on a line with slope \(m^u \) passing through the point \(z \).
2. \(\int (\dim \mu) \, dQ(\mu) \approx \dim \mu_0 \approx \dim \ell_0 \cap F \).
3. \(\mu \) is supported on a product set \(A(y) \times \Pi_2(F) \) with \(y \sim \nu \)
For \(y = \sum_{k=1}^{\infty} \frac{y_k}{n^k}, y_k \in \Pi_2(D) \) define

\[
A(y) = \left\{ \sum_{i=1}^{\infty} \frac{b_i}{m^i} : b_i \in D_{y_i} \right\}
\]

Morally, for \(Q \) a.e. \((\mu, z, u)\):

1. \(\mu \) is supported on a line with slope \(m^u \) passing thorough the point \(z \).
2. \(\int (\dim \mu) \, dQ(\mu) \approx \dim \mu_0 \approx \dim \ell_0 \cap F \).
3. \(\mu \) is supported on a product set \(A(y) \times \Pi_2(F) \) with \(y \sim \nu \) and \(\Pi_2 \mu \) can be related to \(\rho \).