On topological models of zero entropy loosely Bernoulli systems

F. García-Ramos

CONACyT, UASLP
(j.w. with Dominik Kwietniak)
Two categories of dynamical systems

- We say \((X, T)\) is a **topological dynamical system (TDS)** if \(X\) is a compact metrizable space and \(T : X \rightarrow X\) is continuous.
Two categories of dynamical systems

- We say \((X, T)\) is a **topological dynamical system (TDS)** if \(X\) is a compact metrizable space and \(T : X \to X\) is continuous.

- We say \((X, \Sigma, \mu, T)\) is a **measure-preserving system (MPS)** if \((X, \Sigma, \mu)\) is a standard probability space and \(T : X \to X\) is \(\Sigma\)-measurable and preserves \(\mu\).

If \(X\) is a topological space, \(\Sigma\) will always be the completion of the Borel sigma-algebra and we will omit writing it.
Two categories of dynamical systems

- We say \((X, T)\) is a **topological dynamical system (TDS)** if \(X\) is a compact metrizable space and \(T : X \rightarrow X\) is continuous.

- We say \((X, \Sigma, \mu, T)\) is a **measure-preserving system (MPS)** if \((X, \Sigma, \mu)\) is a standard probability space and \(T : X \rightarrow X\) is \(\Sigma\)--measurable and preserves \(\mu\).

 If \(X\) is a topological space, \(\Sigma\) will always be the completion of the Borel sigma-algebra and we will omit writing it.

- Two TDSs, \((X, T)\) and \((X', T')\), are **conjugate** if there exists a bijective continuous function \(f : X \rightarrow X'\) s.t. \(f \circ T = T' \circ f\).
Two categories of dynamical systems

- We say \((X, T)\) is a **topological dynamical system (TDS)** if \(X\) is a compact metrizable space and \(T : X \to X\) is continuous.

- We say \((X, \Sigma, \mu, T)\) is a **measure-preserving system (MPS)** if \((X, \Sigma, \mu)\) is a standard probability space and \(T : X \to X\) is \(\Sigma\)—measurable and preserves \(\mu\).

 If \(X\) is a topological space, \(\Sigma\) will always be the completion of the Borel sigma-algebra and we will omit writing it.

- Two TDSs, \((X, T)\) and \((X', T')\), are **conjugate** if there exists a bijective continuous function \(f : X \to X'\) s.t. \(f \circ T = T' \circ f\).

- Two MPSs, \((X, \Sigma, \mu, T)\) and \((X', \Sigma', \mu', T')\), are **isomorphic** if there exists a bijective bi-measure preserving function \(\phi : X \to X'\) s.t. \(\phi \circ T = T' \circ \phi\).
Two categories of dynamical systems

- We say \((X, T)\) is a **topological dynamical system (TDS)** if \(X\) is a compact metrizable space and \(T : X \rightarrow X\) is continuous.

- We say \((X, \Sigma, \mu, T)\) is a **measure-preserving system (MPS)** if \((X, \Sigma, \mu)\) is a standard probability space and \(T : X \rightarrow X\) is \(\Sigma\)-measurable and preserves \(\mu\).

 If \(X\) is a topological space, \(\Sigma\) will always be the completion of the Borel sigma-algebra and we will omit writing it.

- Two TDSs, \((X, T)\) and \((X', T')\), are **conjugate** if there exists a bijective continuous function \(f : X \rightarrow X'\) s.t. \(f \circ T = T' \circ f\).

- Two MPSs, \((X, \Sigma, \mu, T)\) and \((X', \Sigma', \mu', T')\), are **isomorphic** if there exists a bijective bi-measure preserving function \(\phi : X \rightarrow X'\) s.t. \(\phi \circ T = T' \circ \phi\).

- There are many connections and parallels between the theory of MPSs and TDSs (ergodic theory and topological dynamics).
Basic relationships

- If we start with a TDS \((X, T)\), there exists a Borel \(T\)-invariant probability measure \(\mu\) (Krylov-Bogoliubov), and hence we obtain a MPS \((X, \mu, T)\).
Basic relationships

- If we start with a TDS \((X, T)\), there exists a Borel \(T\)-invariant probability measure \(\mu\) (Krylov-Bogoliubov), and hence we obtain a MPS \((X, \mu, T)\).

- A TDS is **uniquely ergodic** if there is only one Borel \(T\)-invariant probability measure.
Basic relationships

- If we start with a TDS \((X, T)\), there exists a Borel \(T\)-invariant probability measure \(\mu\) (Krylov-Bogoliubov), and hence we obtain a MPS \((X, \mu, T)\).
- A TDS is **uniquely ergodic** if there is only one Borel \(T\)-invariant probability measure.
- If we start with a MPS \((X, \Sigma, \mu, T)\), there exists a uniquely ergodic TDS \((X', \mu', T')\) isomorphic to \((X, \Sigma, \mu, T)\) (Jewett-Krieger).
Basic relationships

- If we start with a TDS \((X, T)\), there exists a Borel \(T\)-invariant probability measure \(\mu\) (Krylov-Bogoliubov), and hence we obtain a MPS \((X, \mu, T)\).

- A TDS is **uniquely ergodic** if there is only one Borel \(T\)-invariant probability measure.

- If we start with a MPS \((X, \Sigma, \mu, T)\), there exists a uniquely ergodic TDS \((X', \mu', T')\) isomorphic to \((X, \Sigma, \mu, T)\) (Jewett-Krieger).

- In this case we say \((X', T')\) is a **topological model for** \((X, \Sigma, \mu, T)\) (uniquely ergodic).
Analogous properties
Relationship

- Analogous properties
 - **Measurable**
 - Entropy
 - Mixing
 - Discrete spectrum on $L^2(X, \mu)$
 - Measure distal
 - K-system
 - **Topological**
 - Topological entropy
 - Topologically mixing
 - Discrete spectrum on $C(X)$
 - Distal
 - Completely positive top. entropy
The *entropy* of a MPS is equal to the *topological entropy* of any of its models.
The *entropy* of a MPS is equal to the *topological entropy* of any of its models.

Nonetheless, for all the other properties we only find one way arrows.
The entropy of a MPS is equal to the topological entropy of any of its models.

Nonetheless, for all the other properties we only find one way arrows.

E.g. any topological model of a mixing MPS is topologically mixing, but there exists uniquely ergodic top. mixing TDS \((X, T)\) such that \((X, \mu, T)\) is not mixing (in some cases even discrete spectrum).
The *entropy* of a MPS is equal to the *topological entropy* of any of its models.

Nonetheless, for all the other properties we only find one way arrows.

E.g. any topological model of a mixing MPS is topologically mixing, but there exists uniquely ergodic top. mixing TDS \((X, T)\) such that \((X, \mu, T)\) is not mixing (in some cases even discrete spectrum).

<table>
<thead>
<tr>
<th>MPS</th>
<th>Uniquely ergodic TDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing</td>
<td>(\Rightarrow) Topologically mixing</td>
</tr>
<tr>
<td>(K)-system</td>
<td>(\Rightarrow) Completely positive top. entropy</td>
</tr>
<tr>
<td>Measure distal</td>
<td>(\Leftarrow) Distal</td>
</tr>
<tr>
<td>Discrete spectrum on (L^2(X, \mu))</td>
<td>(\Leftarrow) Discrete spectrum on (C(X))</td>
</tr>
</tbody>
</table>
Questions

- Are there any correspondences between isomorphism-invariant properties of ergodic MPSs and conjugacy-invariant properties of their topological models?
Questions

- Are there any correspondences between isomorphism-invariant properties of ergodic MPSs and conjugacy-invariant properties of their topological models?

- From the previous, measurable randomness properties \Rightarrow topological randomness, topological determinism properties \Rightarrow measurable determinism

By doing this we will give an intrinsic characterization of topological models for this class of MPSs.
Questions

- Are there any correspondences between isomorphism-invariant properties of ergodic MPSs and conjugacy-invariant properties of their topological models?

- From the previous, measurable randomness properties \Rightarrow topological randomness, topological determinism properties \Rightarrow measurable determinism

- Is there a property that is "influenced" by both determinism and randomness?

In this talk we will give a topological "version" of zero entropy loosely Bernoulli systems, to give an answer to this question.

MPS Uniquely ergodic TDS

By doing this we will give an intrinsic characterization of topological models for this class of MPSs.

F. García-Ramos ()
Questions

- Are there any correspondences between isomorphism-invariant properties of ergodic MPSs and conjugacy-invariant properties of their topological models?

- From the previous, measurable randomness properties \Rightarrow topological randomness, topological determinism properties \Rightarrow measurable determinism

- Is there a property that is "influenced" by both determinism and randomness?

- In this talk we will give a topological "version" of zero entropy loosely Bernoulli systems, to give an answer to this question.
Questions

- Are there any correspondences between isomorphism-invariant properties of ergodic MPSs and conjugacy-invariant properties of their topological models?
- From the previous, measurable randomness properties \Rightarrow topological randomness, topological determinism properties \Rightarrow measurable determinism
- Is there a property that is "influenced" by both determinism and randomness?
- In this talk we will give a topological "version" of zero entropy loosely Bernoulli systems, to give an answer to this question.

\textbf{MPS} \quad $\textbf{Uniquely ergodic TDS}$

Zero entropy loosely Bernoulli \iff ?
Questions

- Are there any correspondences between isomorphism-invariant properties of ergodic MPSs and conjugacy-invariant properties of their topological models?

- From the previous, measurable randomness properties ⇒ topological randomness, topological determinism properties ⇒ measurable determinism

- Is there a property that is "influenced" by both determinism and randomness?

- In this talk we will give a topological "version" of zero entropy loosely Bernoulli systems, to give an answer to this question.

 MPS \(\text{Uniquely ergodic TDS} \)

 Zero entropy loosely Bernoulli \(\Leftrightarrow \) ?

- By doing this we will give an intrinsic characterization of topological models for this class of MPSs.
Isomorphism problem

- Isomorphism problem: *classify (a family of) MPS up to isomorphism.*
Isomorphism problem

- Isomorphism problem: classify (a family of) MPS up to isomorphism.
- The first isomorphism theorem in ergodic theory was given by von Neumann.
Isomorphism problem: classify (a family of) MPS up to isomorphism.

The first isomorphism theorem in ergodic theory was given by von Neumann.

A MPS is Kronecker if it is isomorphic to a group rotation on a compact abelian group equipped with the Haar measure.
Isomorphism problem

- Isomorphism problem: classify (a family of) MPS up to isomorphism.

- The first isomorphism theorem in ergodic theory was given by von Neumann.

- A MPS is **Kronecker** if it is isomorphic to a group rotation on a compact abelian group equipped with the Haar measure.

- An ergodic MPS is Kronecker if and only if the (induced) Koopman operator on $L^2(X, \mu)$ has discrete spectrum (Halmos - von Neumann).
Isomorphism problem

- Isomorphism problem: classify (a family of) MPS up to isomorphism.
- The first isomorphism theorem in ergodic theory was given by von Neumann.
- A MPS is **Kronecker** if it is isomorphic to a group rotation on a compact abelian group equipped with the Haar measure.
- An ergodic MPS is Kronecker if and only if the (induced) Koopman operator on $L^2(X, \mu)$ has discrete spectrum (Halmos - von Neumann).
- Two Kronecker MPSs are isomorphic if and only if they are spectrally isomorphic (von Neumann).
von Neumann asked if the uniform Bernoulli measure on $\{0, 1\}^\mathbb{Z}$ is isomorphic to the uniform Bernoulli measure on $\{0, 1, 2\}^\mathbb{Z}$. This question was answered by Kolmogorov using entropy (\(\log_2 6 = \log_3\)). Then, Ornstein proved that Bernoulli systems with the same entropy are always isomorphic. In order to understand the isomorphism class of Bernoulli systems, Ornstein introduced the notions of \(\ldots\)nitely determined and \(\ldots\)very weak Bernoulli. At the heart of these definitions lies the Hamming (\(d\)) metric on words $d(x_1 \ldots x_n, y_1 \ldots y_n) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{x_i \neq y_i}$.
von Neumann asked if the uniform Bernoulli measure on \(\{0, 1\}^\mathbb{Z} \) is isomorphic to the uniform Bernoulli measure on \(\{0, 1, 2\}^\mathbb{Z} \).

This question was answered by Kolmogorov using entropy (\(\log 2 \neq \log 3 \)).
von Neumann asked if the uniform Bernoulli measure on \(\{0, 1\}^\mathbb{Z} \) is isomorphic to the uniform Bernoulli measure on \(\{0, 1, 2\}^\mathbb{Z} \).

This question was answered by Kolmogorov using entropy (\(\log 2 \neq \log 3 \)).

Then, Ornstein proved that Bernoulli systems with the same entropy are always isomorphic.
von Neumann asked if the uniform Bernoulli measure on $\{0, 1\}^\mathbb{Z}$ is isomorphic to the uniform Bernoulli measure on $\{0, 1, 2\}^\mathbb{Z}$.

This question was answered by Kolmogorov using entropy ($\log 2 \neq \log 3$).

Then, Ornstein proved that Bernoulli systems with the same entropy are always isomorphic.

In order to understand the isomorphism class of Bernoulli systems, Ornstein introduced the notions of finitely determined and very weak Bernoulli.
von Neumann asked if the uniform Bernoulli measure on $\{0, 1\}^\mathbb{Z}$ is isomorphic to the uniform Bernoulli measure on $\{0, 1, 2\}^\mathbb{Z}$.

This question was answered by Kolmogorov using entropy ($\log 2 \neq \log 3$).

Then, Ornstein proved that Bernoulli systems with the same entropy are always isomorphic.

In order to understand the isomorphism class of Bernoulli systems, Ornstein introduced the notions of finitely determined and very weak Bernoulli.

At the heart of these definitions lies the Hamming (\overline{d}) metric on words

$$\overline{d}(x_1\ldots x_n, y_1\ldots y_n) = \frac{1}{n} \left| \{ i \in [0, n] : x_i \neq y_i \} \right|.$$
von Neumann asked if the uniform Bernoulli measure on \(\{0, 1\}^\mathbb{Z} \) is isomorphic to the uniform Bernoulli measure on \(\{0, 1, 2\}^\mathbb{Z} \).

This question was answered by Kolmogorov using entropy (\(\log 2 \neq \log 3 \)).

Then, Ornstein proved that Bernoulli systems with the same entropy are always isomorphic.

In order to understand the isomorphism class of Bernoulli systems, Ornstein introduced the notions of *finitely determined* and *very weak Bernoulli*.

At the heart of these definitions lies the Hamming (\(\overline{d} \)) metric on words

\[
\overline{d}(x_1...x_n, y_1...y_n) = \frac{1}{n} \left| \{ i \in [0, n] : x_i \neq y_i \} \right|.
\]

This metric is also used in information theory as a way to measure "mistake" noise.
Informally, a process is *very weak Bernoulli*, if the process obtained by fixing some letters is very similar (in a d sense) to the original one.

Now take the periodic measure $\mu = \delta(01)\mathbb{N}/2 + \delta(10)\mathbb{N}/2$. Here typical words that start with 0 will be very different to words that begin with 1.
Informally, a process is very weak Bernoulli, if the process obtained by fixing some letters is very similar (in a d sense) to the original one.

For example, the Bernoulli process where you fix the first letter to be 0 gives very similar values to the original Bernoulli process.
Informally, a process is very weak Bernoulli, if the process obtained by fixing some letters is very similar (in a \bar{d} sense) to the original one.

For example, the Bernoulli process where you fix the first letter to be 0 gives very similar values to the original Bernoulli process.

In other words, every "typical" word that starts with 0 will be \bar{d} close to some typical words with no restriction.
Informally, a process is *very weak Bernoulli*, if the process obtained by fixing some letters is very similar (in a d sense) to the original one.

For example, the Bernoulli process where you fix the first letter to be 0 gives very similar values to the original Bernoulli process.

In other words, every "typical" word that starts with 0 will be d close to some typical words with no restriction.

Now take the periodic measure $\mu = \delta_{(01)\infty}/2 + \delta_{(10)\infty}/2$.
Informally, a process is very weak Bernoulli, if the process obtained by fixing some letters is very similar (in a \overline{d} sense) to the original one.

For example, the Bernoulli process where you fix the first letter to be 0 gives very similar values to the original Bernoulli process.

In other words, every "typical" word that starts with 0 will be \overline{d} close to some typical words with no restriction.

Now take the periodic measure $\mu = \delta_{(01)^\infty}/2 + \delta_{(10)^\infty}/2$.

Here typical words that start with 0 will be very different to words that begin with 1.
Other isomorphisms theorems?

- Finding isomorphisms theorems for other classes turned out to be a very hard problem.
Finding isomorphisms theorems for other clases turned out to be a very hard problem.

Ornstein-Rudolph-Weiss approached the isomorphism problem from a different perspective.
The edit (\bar{f}) metric is defined as follows

$$\bar{f}(x_1 \ldots x_n, y_1 \ldots y_n) = 1 - \frac{k}{n},$$

where k is the largest integer such that for some

$$1 \leq i(1) < i(2) < \ldots < i(k) \leq n$$

and

$$1 \leq j(1) < j(2) < \ldots < j(k) \leq n$$

we have that $x_{i(s)} = y_{j(s)}$ for $s = 1, \ldots, k$.

The edit metric can measure "noise" that can delete or insert symbols. For example

$$\bar{f}(01010, 00101) = \frac{1}{6},$$

and

$$d(010101, 101010) = 0.$$
The edit (\tilde{f}) metric is defined as follows

$$\tilde{f}(x_1 \ldots x_n, y_1 \ldots y_n) = 1 - \frac{k}{n},$$

where k is the largest integer such that for some

$$1 \leq i(1) < i(2) < \ldots < i(k) \leq n$$

and

$$1 \leq j(1) < j(2) < \ldots < j(k) \leq n$$

we have that $x_{i(s)} = y_{j(s)}$ for $s = 1, \ldots, k$.

The edit metric can measure "noise" that can delete or insert symbols.
The edit (\bar{f}) metric is defined as follows

$$\bar{f}(x_1 \ldots x_n, y_1 \ldots y_n) = 1 - \frac{k}{n},$$

where k is the largest integer such that for some

$$1 \leq i(1) < i(2) < \ldots < i(k) \leq n$$

and

$$1 \leq j(1) < j(2) < \ldots < j(k) \leq n$$

we have that $x_{i(s)} = y_{j(s)}$ for $s = 1, \ldots, k$.

The edit metric can measure "noise" that can delete or insert symbols.

For example $\bar{f}(010101, 001010) = 1 - 5/6 = 1/6$, and $d(010101, 101010) = 0$.
Loosely Bernoulli

- We define **loosely Bernoulli** by replacing \bar{f} instead of \bar{d} in the definition of very weak Bernoulli.
Loosely Bernoulli

- We define **loosely Bernoulli** by replacing \bar{f} instead of \bar{d} in the definition of very weak Bernoulli.
- On this family ORW proved an "isomorphism" theorem, using a weaker notion of isomorphism.
Loosely Bernoulli

- We define **loosely Bernoulli** by replacing \bar{f} instead of \bar{d} in the definition of very weak Bernoulli.
- On this family ORW proved an "isomorphism" theorem, using a weaker notion of isomorphism.
- They proved that two loosely Bernoulli systems with the same entropy are Kakutani equivalent.
Loosely Bernoulli

- We define **loosely Bernoulli** by replacing \bar{f} instead of \bar{d} in the definition of very weak Bernoulli.
- On this family ORW proved an "isomorphism" theorem, using a weaker notion of isomorphism.
- They proved that two loosely Bernoulli systems with the same entropy are Kakutani equivalent.
- Two MPSs (X, Σ, μ, T) and (X', Σ', μ', T') are **Kakutani equivalent** if there exist measurable sets $A \subset X$ and $A' \subset X'$ with $\mu(A) \cdot \mu'(A') > 0$ such that (A, T_A, μ_A) and $(A', T_{A'}, \mu_{A'})$ are isomorphic, where $T_A : A \to A$ denotes the induced transformation (or the first return map) and μ_A is the induced measure on A.

F. García-Ramos ()
Loosely Bernoulli

- We define **loosely Bernoulli** by replacing \bar{f} instead of \bar{d} in the definition of very weak Bernoulli.
- On this family ORW proved an "isomorphism" theorem, using a weaker notion of isomorphism.
- They proved that two loosely Bernoulli systems with the same entropy are Kakutani equivalent.
- Two MPSs (X, Σ, μ, T) and (X', Σ', μ', T') are **Kakutani equivalent** if there exist measurable sets $A \subset X$ and $A' \subset X'$ with $\mu(A) \cdot \mu'(A') > 0$ such that (A, T_A, μ_A) and $(A', T_{A'}, \mu_{A'})$ are isomorphic, where $T_A : A \to A$ denotes the induced transformation (or the first return map) and μ_A is the induced measure on A.
- Actually, they proved that if $0 < h_\mu(T), h_\mu(T'), < \infty$ then they are also Kakutani equivalent (and the A can be taking arbitrarily large).
Loosely Bernoulli

- We define **loosely Bernoulli** by replacing \bar{f} instead of \bar{d} in the definition of very weak Bernoulli.
- On this family ORW proved an "isomorphism" theorem, using a weaker notion of isomorphism.
- They proved that two loosely Bernoulli systems with the same entropy are Kakutani equivalent.
- Two MPSs (X, Σ, μ, T) and (X', Σ', μ', T') are **Kakutani equivalent** if there exist measurable sets $A \subset X$ and $A' \subset X'$ with $\mu(A) \cdot \mu'(A') > 0$ such that (A, T_A, μ_A) and $(A', T_{A'}, \mu_{A'})$ are isomorphic, where $T_A : A \rightarrow A$ denotes the induced transformation (or the first return map) and μ_A is the induced measure on A.
- Actually, they proved that if $0 < h_\mu(T), h_\mu(T'), < \infty$ then they are also Kakutani equivalent (and the A can be taking arbitrarily large).
- It is easy to see that (very weak) Bernoulli systems are loosely Bernoulli (because $\bar{f} \leq \bar{d}$)
Surprisingly, there exists loosely Bernoulli systems with zero entropy.
Surprisingly, there exists loosely Bernoulli systems with zero entropy.

This can be seen on \(\mu = \delta_{(01)}\infty / 2 + \delta_{(10)}\infty / 2 \), because any two (long) words will be very close in \(\overline{f} \).
Surprisingly, there exists loosely Bernoulli systems with zero entropy. This can be seen on $\mu = \delta_{(01)^\infty}/2 + \delta_{(10)^\infty}/2$, because any two (long) words will be very close in \bar{f}.

$\bar{f}((01)^n, (10)^n) = 1/n$
Surprisingly, there exists loosely Bernoulli systems with zero entropy.

This can be seen on $\mu = \delta_{(01)^\infty}/2 + \delta_{(10)^\infty}/2$, because any two (long) words will be very close in \overline{f}.

$\overline{f}((01)^n, (10)^n) = 1/n$

We say a MPS is **loosely Kronecker** if it is Kakutani equivalent to a Kronecker system.
Surprisingly, there exists loosely Bernoulli systems with zero entropy.

This can be seen on \(\mu = \delta_{(01)\infty}/2 + \delta_{(10)\infty}/2 \), because any two (long) words will be very close in \(\bar{f} \).

\(\bar{f}((01)^n, (10)^n) = 1/n \)

We say a MPS is **loosely Kronecker** if it is Kakutani equivalent to a Kronecker system.

A loosely Bernoulli system has zero entropy if and only if it is loosely Kronecker (Feldman, Katok).
Zero entropy loosely Bernoulli

- Surprisingly, there exists loosely Bernoulli systems with zero entropy.
- This can be seen on $\mu = \delta_{(01)\infty}/2 + \delta_{(10)\infty}/2$, because any two (long) words will be very close in \overline{f}.
- $\overline{f}((01)^n, (10)^n) = 1/n$
- We say a MPS is **loosely Kronecker** if it is Kakutani equivalent to a Kronecker system.
- A loosely Bernoulli system has zero entropy if and only if it is loosely Kronecker (Feldman, Katok).
- Finite rank (ORW), horocylcle flows (Ratner) and measure distal systems are loosely Kronecker but not necessarily Kronecker.
Surprisingly, there exists loosely Bernoulli systems with zero entropy. This can be seen on \(\mu = \delta_{(01)\infty}/2 + \delta_{(10)\infty}/2 \), because any two (long) words will be very close in \(\overline{f} \).

\(\overline{f}((01)^n,(10)^n) = 1/n \)

We say a MPS is \textbf{loosely Kronecker} if it is Kakutani equivalent to a Kronecker system.

A loosely Bernoulli system has zero entropy if and only if it is loosely Kronecker (Feldman, Katok).

Finite rank (ORW), horocylcle flows (Ratner) and measure distal systems are loosely Kronecker but not necessarily Kronecker.

We will now describe topological models for loosely Kronecker systems.
Dynamical pseudometrics

Let \((X, T)\) be a TDS (with metric \(d\)). We say \(\rho\) is a dynamical pseudo-metric on \(X\), if \(\rho(x, y) = \rho(Tx, Ty)\).

Even though Kronecker systems are very well understood from a measurable point of view, only recently we are understanding the range of topological behaviours that the models can have (Downarowicz, GR, Glasner, Jägger, Li, Thouvenot, Ye). More on this later.

The Besicovitch pseudometric is particularly useful for understanding some families of the models for Kronecker MPSs.
Dynamical pseudometrics

- Let \((X, T)\) be a TDS (with metric \(d\)). We say \(\rho\) is a dynamical pseudo-metric on \(X\), if \(\rho(x, y) = \rho(Tx, Ty)\).
- We define the **Besicovitch pseudometric** as

\[
\rho_B = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} d(T^i x, T^i y).
\]

Even though Kronecker systems are very well understood from a measurable point of view, only recently we are understanding the range of topological behaviour that the models can have (Downarowicz, GR, Glasner, Jägger, Li, Thouvenot, Ye). More on this later.
Dynamical pseudometrics

- Let \((X, T)\) be a TDS (with metric \(d\)). We say \(\rho\) is a dynamical pseudo-metric on \(X\), if \(\rho(x, y) = \rho(Tx, Ty)\).

- We define the **Besicovitch pseudometric** as

\[\rho_B = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} d(T^i x, T^i y).\]

- Even though Kronecker systems are very well understood from a measurable point of view, only recently we are understanding the range of topological behaviours that the models can have (Downarowicz, GR, Glasner, Jägger, Li, Thouvenot, Ye). More on this later.
Dynamical pseudometrics

- Let (X, T) be a TDS (with metric d). We say ρ is a dynamical pseudo-metric on X, if $\rho(x, y) = \rho(Tx, Ty)$.
- We define the **Besicovitch pseudometric** as

 \[\rho_B = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} d(T^i x, T^i y). \]

- Even though Kronecker systems are very well understood from a measurable point of view, only recently we are understanding the range of topological behaviours that the models can have (Downarowicz, GR, Glasner, Jägger, Li, Thouvenot, Ye). More on this later.
- The Besicovitch pseudometric is particularly useful for understanding some families of the models for Kronecker MPSs.
Dynamical pseudometrics

- So, if one can consider the Besicovitch pseudometric as an infinite topological Hamming distance.
So, if one can consider the Besicovitch pseudometric as an infinite topological Hamming distance.

Maybe to approach topological models of LK, one could try to use some "Besicovitch" version of the \bar{f}.
Dynamical pseudometrics

- So, if one can consider the Besicovitch pseudometric as an infinite topological Hamming distance.
- Maybe to approach topological models of LK, one could try to use some "Besicovitch" version of the \bar{f}.
- Actually, this notion was introduced by Kwietniak and Łącka, and was coined the Feldman-Katok pseudometric.
Dynamical pseudometrics

- So, if one can consider the Besicovitch pseudometric as an infinite topological Hamming distance.
- Maybe to approach topological models of LK, one could try to use some "Besicovitch" version of the \tilde{f}.
- Actually, this notion was introduced by Kwietniak and Łącka, and was coined the Feldman-Katok pseudometric.
- Given a TDS and two points $x, y \in X$, we say $S, S' \subset \mathbb{N}$ are δ-matched if there exists a bijective order preserving function $\pi : S \to S'$ such that $d(T^i x, T^{\pi(i)} y) \leq \delta$.
Dynamical pseudometrics

- So, if one can consider the Besicovitch pseudometric as an infinite topological Hamming distance.
- Maybe to approach topological models of LK, one could try to use some "Besicovitch" version of the \bar{f}.
- Actually, this notion was introduced by Kwietniak and Łącka, and was coined the Feldman-Katok pseudometric.
- Given a TDS and two points $x, y \in X$, we say $S, S' \subset \mathbb{N}$ are δ-matched if there exists a bijective order preserving function $\pi : S \to S'$ such that $d(T^i x, T^{\pi(i)} y) \leq \delta$.
- For $S \subset \mathbb{N}$, $\overline{D}(S) = \limsup_{n \to \infty} \left| \{S \cap \{1, \ldots, n\}\} \right| / n$ is the upper density.
Dynamical pseudometrics

- So, if one can consider the Besicovitch pseudometric as an infinite topological Hamming distance.
- Maybe to approach topological models of LK, one could try to use some "Besicovitch" version of the \overline{f}.
- Actually, this notion was introduced by Kwietniak and Łącka, and was coined the Feldman-Katok pseudometric.
- Given a TDS and two points $x, y \in X$, we say $S, S' \subset \mathbb{N}$ are δ-matched if there exists a bijective order preserving function $\pi : S \to S'$ such that $d(T^i x, T^\pi(i)y) \leq \delta$.
- For $S \subset \mathbb{N}$, $\overline{D}(S) = \limsup_{n \to \infty} |\{S \cap \{1, ..., n\}\}| / n$ is the upper density.
- We define the **Feldman-Katok** pseudometric as $\rho_{FK}(x, y) = \inf \{\delta > 0 : \exists$ δ-matched S, S' with $\overline{D}(S'), \overline{D}(S) \geq 1 - \delta \}$.
Theorem

Theorem 1 (GR-Kwietniak) Let (X, T) be a TDS and μ be an ergodic T-invariant Borel probability measure. Then (X, μ, T) is loosely Kronecker if and only if there exists a Borel set $M \subset X$ with $\mu(M) = 1$ such that $\rho_{FK}(x, y) = 0$ for every $x, y \in M$. This gives a hybrid characterization of when an ergodic Borel measure is loosely Kronecker.

We say (X, T) is topologically loosely Kronecker if $\rho_{FK}(x, y) = 0$ for every $x, y \in M$.

Theorem 2 (GR-K) Let (X, T) be a TDS. (X, T) is topologically loosely Kronecker if and only if it is uniquely ergodic and (X, μ, T) is loosely Kronecker. This gives a purely topological characterization of topological models of loosely Kronecker systems.

F. García-Ramos (j.w. with Dominik Kwietniak)
Theorem 1 (GR-Kwietniak) Let (X, T) be a TDS and μ be an ergodic T-invariant Borel probability measure. Then (X, μ, T) is loosely Kronecker if and only if there exists a Borel set $M \subset X$ with $\mu(M) = 1$ such that $\rho_{FK}(x, y) = 0$ for every $x, y \in M$.

This gives a hybrid characterization of when an ergodic Borel measure is loosely Kronecker.
Theorem 1 (GR-Kwietniak) Let \((X, T)\) be a TDS and \(\mu\) be an ergodic \(T\)-invariant Borel probability measure. Then \((X, \mu, T)\) is loosely Kronecker if and only if there exists a Borel set \(M \subset X\) with \(\mu(M) = 1\) such that \(\rho_{FK}(x, y) = 0\) for every \(x, y \in M\).

This gives a hybrid characterization of when an ergodic Borel measure is loosely Kronecker.

We say \((X, T)\) is **topologically loosely Kronecker** if \(\rho_{FK}(x, y) = 0\) for every \(x, y \in M\).
Theorem 1 (GR-Kwietniak) Let \((X, T)\) be a TDS and \(\mu\) be an ergodic \(T\)-invariant Borel probability measure. Then \((X, \mu, T)\) is loosely Kronecker if and only if there exists a Borel set \(M \subset X\) with \(\mu(M) = 1\) such that \(\rho_{FK}(x, y) = 0\) for every \(x, y \in M\).

This gives a hybrid characterization of when an ergodic Borel measure is loosely Kronecker.

We say \((X, T)\) is **topologically loosely Kronecker** if \(\rho_{FK}(x, y) = 0\) for every \(x, y \in M\).

Theorem 2 (GR-K) Let \((X, T)\) be a TDS. \((X, T)\) is topologically loosely Kronecker if and only if it is uniquely ergodic and \((X, \mu, T)\) is loosely Kronecker.
Theorem 1 (GR-Kwietniak) Let \((X, T)\) be a TDS and \(\mu\) be an ergodic \(T\)-invariant Borel probability measure. Then \((X, \mu, T)\) is loosely Kronecker if and only if there exists a Borel set \(M \subset X\) with \(\mu(M) = 1\) such that \(\rho_{FK}(x, y) = 0\) for every \(x, y \in M\). This gives a hybrid characterization of when an ergodic Borel measure is loosely Kronecker.

We say \((X, T)\) is topologically loosely Kronecker if \(\rho_{FK}(x, y) = 0\) for every \(x, y \in M\).

Theorem 2 (GR-K) Let \((X, T)\) be a TDS. \((X, T)\) is topologically loosely Kronecker if and only if it is uniquely ergodic and \((X, \mu, T)\) is loosely Kronecker.

This gives a purely topological characterization of topological models of loosely Kronecker systems.
Theorem 1 (GR-Kwietniak) Let (X, T) be a TDS and μ be an ergodic T-invariant Borel probability measure. Then (X, μ, T) is loosely Kronecker if and only if there exists a Borel set $M \subset X$ with $\mu(M) = 1$ such that $\rho_{FK}(x, y) = 0$ for every $x, y \in M$.

This gives a hybrid characterization of when an ergodic Borel measure is loosely Kronecker.

We say (X, T) is topologically loosely Kronecker if $\rho_{FK}(x, y) = 0$ for every $x, y \in M$.

Theorem 2 (GR-K) Let (X, T) be a TDS. (X, T) is topologically loosely Kronecker if and only if it is uniquely ergodic and (X, μ, T) is loosely Kronecker.

This gives a purely topological characterization of topological models of loosely Kronecker systems.

MPS

Zero entropy loosely Bernoulli \iff topologically loosely Kronecker

Uniquely ergodic TDS
Interplay with topological dynamics

- For MPSs we have the following hierarchy of zero entropy systems: Kronecker \Rightarrow Measure distal \Rightarrow Loosely Kronecker.
Interplay with topological dynamics

- For MPSs we have the following hierarchy of zero entropy systems: Kronecker ⇒ Measure distal ⇒ Loosely Kronecker.
- The interplay of each property with topological dynamics is quite different.
Interplay with topological dynamics

- For MPSs we have the following hierarchy of zero entropy systems: Kronecker \Rightarrow Measure distal \Rightarrow Loosely Kronecker.
- The interplay of each property with topological dynamics is quite different.
- **Kr:** There are many notions that can be considered a topological analogue of Kronecker (e.g. topological discrete spectrum, zero topological sequence entropy, tame, mean equicontinuity).
Interplay with topological dynamics

- For MPSs we have the following hierarchy of zero entropy systems: Kronecker \Rightarrow Measure distal \Rightarrow Loosely Kronecker.
- The interplay of each property with topological dynamics is quite different.
- **Kr:** There are many notions that can be considered a topological analogue of Kronecker (e.g. topological discrete spectrum, zero topological sequence entropy, tame, mean equicontinuity).
- There are topological models for Kronecker strictly contained in each class, and even top. mixing models (outside these classes).
Interplay with topological dynamics

- For MPSs we have the following hierarchy of zero entropy systems: Kronecker \Rightarrow Measure distal \Rightarrow Loosely Kronecker.

- The interplay of each property with topological dynamics is quite different.

- **Kr:** There are many notions that can be considered a topological analogue of Kronecker (e.g. topological discrete spectrum, zero topological sequence entropy, tame, mean equicontinuity).
 - There are topological models for Kronecker strictly contained in each class, and even top. mixing models (outside these classes).

- **Di:** There is only one topological notion of distality.
For MPSs we have the following hierarchy of zero entropy systems: Kronecker \Rightarrow Measure distal \Rightarrow Loosely Kronecker.

The interplay of each property with topological dynamics is quite different.

Kr: There are many notions that can be considered a topological analogue of Kronecker (e.g. topological discrete spectrum, zero topological sequence entropy, tame, mean equicontinuity).

There are topological models for Kronecker strictly contained in each class, and even top. mixing models (outside these classes).

Di: There is only one topological notion of distality.

Every measure distal MPS has a distal topological realization (*isomorphic for some measure*), but in some cases these realizations are never uniquely ergodic (Lindenstrauss).
Interplay with topological dynamics

- For MPSs we have the following hierarchy of zero entropy systems: Kronecker \Rightarrow Measure distal \Rightarrow Loosely Kronecker.
- The interplay of each property with topological dynamics is quite different.
- **Kr:** There are many notions that can be considered a topological analogue of Kronecker (e.g. topological discrete spectrum, zero topological sequence entropy, tame, mean equicontinuity).
- There are topological models for Kronecker strictly contained in each class, and even top. mixing models (outside these classes).
- **Di:** There is only one topological notion of distality.
- Every measure distal MPS has a distal topological realization (*isomorphic for some measure*), but in some cases these realizations are never uniquely ergodic (Lindenstrauss).
- **LK:** There is only one topological analogue of loosely Kronecker; in this case we have that every model is topologically loosely Kronecker.
We will now describe some topological results for Kronecker systems.
We will now describe some topological results for Kronecker systems.

A TDS is **equicontinuous** if \(\{ T^i \}_{i \in \mathbb{N}} \) is equicontinuous, i.e. for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(d(x, y) \leq \delta \) then \(d(T^i x, T^i y) \leq \varepsilon \) for all \(i \geq 0 \).
We will now describe some topological results for Kronecker systems.

A TDS is **equicontinuous** if \(\{ T^i \}_{i \in \mathbb{N}} \) is equicontinuous, i.e. for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(d(x, y) \leq \delta \) then \(d(T^i x, T^i y) \leq \varepsilon \) for all \(i \geq 0 \).

These are considered the most deterministic TDS.
We will now describe some topological results for Kronecker systems.

A TDS is **equicontinuous** if \(\{ T^i \} \) is equicontinuous, i.e. for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(d(x, y) \leq \delta \) then \(d(T^ix, T^iy) \leq \varepsilon \) for all \(i \geq 0 \).

These are considered the most deterministic TDS.

A TDS is **mean equicontinuous** if for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(d(x, y) \leq \delta \) then \(\rho_B(x, y) \leq \varepsilon \).
We will now describe some topological results for Kronecker systems.

A TDS is **equicontinuous** if \(\{ T^i \}_{i \in \mathbb{N}} \) is equicontinuous, i.e. for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(d(x, y) \leq \delta \) then \(d(T^ix, T^iy) \leq \varepsilon \) for all \(i \geq 0 \).

These are considered the most deterministic TDS.

A TDS is **mean equicontinuous** if for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(d(x, y) \leq \delta \) then \(\rho_B(x, y) \leq \varepsilon \).

Remember \(\rho_B(x, y) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} d(T^ix, T^iy) \).

This is essentially the notion of mean-L-stability, introduced by Fomin and studied by Auslander and Oxtoby.
We will now describe some topological results for Kronecker systems.

A TDS is **equicontinuous** if \(\{ T^i \}_{i \in \mathbb{N}} \) is equicontinuous, i.e. for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(d(x, y) \leq \delta \) then \(d(T^i x, T^i y) \leq \varepsilon \) for all \(i \geq 0 \).

These are considered the most deterministic TDS.

A TDS is **mean equicontinuous** if for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(d(x, y) \leq \delta \) then \(\rho_B(x, y) \leq \varepsilon \).

Remember \(\rho_B(x, y) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} d(T^i x, T^i y) \).

This is essentially the notion of mean-L-stability, introduced by Fomin and studied by Auslander and Oxtoby.
Comparison

Theorem (GR) Let (X, T) be a TDS and μ be an ergodic T-invariant Borel probability measure. (X, μ, T) is Kronecker if and only if for every $\tau > 0$ there exists a Borel set $M \subset X$ with $\mu(M) \geq 1 - \tau$ such that $T|_M$ is mean equicontinuous (GR).

The ergodicity hypothesis can be dropped (Huang-Li-Thouvenot-Ye). Here we take large but not full measure sets M.

Theorem (Li-Tu-Ye, Downarowicz-Glasner, Fuhrmann-Groger-Lenz). (X, T) is mean equicontinuous if and only if (X, μ, T) has discrete spectrum on $L^2(X, \mu)$ with continuous eigenfunctions (Li-Tu-Ye, Downarowicz-Glasner, Fuhrmann-Groger-Lenz).

For Besicovitch studying $\rho_B(x, y) = 0$ is too strong.

Not every model for Kronecker is mean equicontinuous. It is not known if unique ergodicity gives extra information for the support of Borel Kronecker measures.
Comparison

- **Theorem** (GR) *Let* \((X, T)\) *be a TDS and* \(\mu\) *be an ergodic* \(T\)-invariant Borel probability measure. \((X, \mu, T)\) *is Kronecker if and only if for every* \(\tau > 0\) *there exists a Borel set* \(M \subset X\) *with* \(\mu(M) \geq 1 - \tau\) *such that* \(T\mid_M\) *is mean equicontinuous (GR).*

- The ergodicity hypothesis can be dropped (Huang-Li-Thouvenot-Ye).
Theorem (GR) Let \((X, T)\) be a TDS and \(\mu\) be an ergodic \(T\)-invariant Borel probability measure. \((X, \mu, T)\) is Kronecker if and only if for every \(\tau > 0\) there exists a Borel set \(M \subset X\) with \(\mu(M) \geq 1 - \tau\) such that \(T|_M\) is mean equicontinuous (GR).

The ergodicity hypothesis can be dropped (Huang-Li-Thouvenot-Ye).

Here we take large but not full measure sets \(M\).
Theorem (GR) Let \((X, T)\) be a TDS and \(\mu\) be an ergodic \(T\)-invariant Borel probability measure. \((X, \mu, T)\) is Kronecker if and only if for every \(\tau > 0\) there exists a Borel set \(M \subseteq X\) with \(\mu(M) \geq 1 - \tau\) such that \(T|_M\) is mean equicontinuous (GR).

The ergodicity hypothesis can be dropped (Huang-Li-Thouvenot-Ye).

Here we take large but not full measure sets \(M\).

Theorem (Li-Tu-Ye, Downarowicz-Glasner, Fuhrmann-Groger-Lenz). \((X, T)\) is mean equicontinuous if and only if \((X, \mu, T)\) has discrete spectrum on \(L^2(X, \mu)\) with continuous eigenfunctions (Li-Tu-Ye, Downarowicz-Glasner, Fuhrmann-Groger-Lenz).
Theorem (GR) Let \((X, T)\) be a TDS and \(\mu\) be an ergodic \(T\)-invariant Borel probability measure. \((X, \mu, T)\) is Kronecker if and only if for every \(\tau > 0\) there exists a Borel set \(M \subset X\) with \(\mu(M) \geq 1 - \tau\) such that \(T|_M\) is mean equicontinuous (GR).

The ergodicity hypothesis can be dropped (Huang-Li-Thouvenot-Ye).

Here we take large but not full measure sets \(M\).

Theorem (Li-Tu-Ye, Downarowicz-Glasner, Fuhrmann-Groger-Lenz). \((X, T)\) is mean equicontinuous if and only if \((X, \mu, T)\) has discrete spectrum on \(L^2(X, \mu)\) with continuous eigenfunctions (Li-Tu-Ye, Downarowicz-Glasner, Fuhrmann-Groger-Lenz).

For Besicovitch studying \(\rho_B(x, y) = 0\) is too strong.
Theorem (GR) Let (X, T) be a TDS and μ be an ergodic T-invariant Borel probability measure. (X, μ, T) is Kronecker if and only if for every $\tau > 0$ there exists a Borel set $M \subset X$ with $\mu(M) \geq 1 - \tau$ such that $T |_M$ is mean equicontinuous (GR).

The ergodicity hypothesis can be dropped (Huang-Li-Thouvenot-Ye).

Here we take large but not full measure sets M.

Theorem (Li-Tu-Ye, Downarowicz-Glasner, Fuhrmann-Groger-Lenz). (X, T) is mean equicontinuous if and only if (X, μ, T) has discrete spectrum on $L^2(X, \mu)$ with continuous eigenfunctions (Li-Tu-Ye, Downarowicz-Glasner, Fuhrmann-Groger-Lenz).

For Besicovitch studying $\rho_B(x, y) = 0$ is too strong.

Not every model for Kronecker is mean equicontinuous. It is not known if unique ergodicity gives extra information for the support of Borel Kronecker measures.
We will now briefly explain the hierarchy of topological models for Kronecker systems.
We will now briefly explain the hierarchy of topological models for Kronecker systems.

A TDS is **diam-mean equicontinuous** if for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $\text{diam}(U) \leq \delta$ then
\[
\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \text{diam}(T^i U) \leq \varepsilon.
\]
We will now briefly explain the hierarchy of topological models for Kronecker systems.

A TDS is **diam-mean equicontinuous** if for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $\text{diam}(U) \leq \delta$ then

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \text{diam}(T^i U) \leq \varepsilon.$$

Theorem (GR-Jäger-Ye). A minimal TDS is diam-mean equicontinuous if and only if the maximal equicontinuous factor is almost surely 1-1 (i.e. $\nu(\{x \in X_{eq} : |\pi_{eq}^{-1}(x)| = 1\}) = 1$).

Theorem (Glasner, Fuhrmann-Glasner-Jäger-Oertel) Every minimal tame system is diam-mean equicontinuous.

Theorem (Kerr-Li) Every null TDS (zero top. sequence entropy) is tame.

We have the following (strict) hierarchy for minimal TDS.

- equicontinuous
- null
- tame
- diam-mean equicontinuous
- Kronecker.
We will now briefly explain the hierarchy of topological models for Kronecker systems.

A TDS is **diam-mean equicontinuous** if for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $\text{diam}(U) \leq \delta$ then
\[
\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \text{diam}(T^i U) \leq \varepsilon.
\]

Theorem (GR-Jäger-Ye). A minimal TDS is diam-mean equicontinuous if and only if the maximal equicontinuous factor is almost surely 1-1 (i.e. $\nu(\{x \in X_{eq} : |\pi_{eq}^{-1}(x)| = 1\}) = 1$).

Theorem (Glasner, Fuhrmann-Glasner-Jäger-Oertel) Every minimal tame system is diam-mean equicontinuous.
We will now briefly explain the hierarchy of topological models for Kronecker systems.

A TDS is **diam-mean equicontinuous** if for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $\text{diam}(U) \leq \delta$ then
\[
\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \text{diam}(T^i U) \leq \varepsilon.
\]

Theorem (GR-Jäger-Ye). A minimal TDS is diam-mean equicontinuous if and only if the maximal equicontinuous factor is almost surely 1-1 (i.e. $\nu(\{x \in X_{eq} : |\pi_{eq}^{-1}(x)| = 1\}) = 1$).

Theorem (Glasner, Fuhrmann-Glasner-Jäger-Oertel) Every minimal tame system is diam-mean equicontinuous.

Theorem (Kerr-Li) Every null TDS (zero top. sequence entropy) is tame.
We will now briefly explain the hierarchy of topological models for Kronecker systems.

A TDS is **diam-mean equicontinuous** if for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $\text{diam}(U) \leq \delta$ then

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \text{diam}(T^i U) \leq \varepsilon.$$

Theorem (GR-Jäger-Ye). A minimal TDS is diam-mean equicontinuous if and only if the maximal equicontinuous factor is almost surely 1-1 (i.e. $\nu(\{x \in X_{eq} : |\pi_{eq}^{-1}(x)| = 1\}) = 1$).

Theorem (Glasner, Fuhrmann-Glasner-Jäger-Oertel) Every minimal tame system is diam-mean equicontinuous.

Theorem (Kerr-Li) Every null TDS (zero top. sequence entropy) is tame.

We have the following (strict) hierarchy for minimal TDS.
We will now briefly explain the hierarchy of topological models for Kronecker systems.

A TDS is **diam-mean equicontinuous** if for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $\text{diam}(U) \leq \delta$ then
\[
\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \text{diam}(T_i U) \leq \varepsilon.
\]

Theorem (GR-Jäger-Ye). A minimal TDS is diam-mean equicontinuous if and only if the maximal equicontinuous factor is almost surely 1-1 (i.e. $\nu(\{x \in X_{eq} : |\pi_{eq}^{-1}(x)| = 1\}) = 1$).

Theorem (Glasner, Fuhrmann-Glasner-Jäger-Oertel) Every minimal tame system is diam-mean equicontinuous.

Theorem (Kerr-Li) Every null TDS (zero top. sequence entropy) is tame.

We have the following (strict) hierarchy for minimal TDS.

- equicontinuity \Rightarrow null \Rightarrow tame \Rightarrow diam-mean equicontinuous \Rightarrow mean equicontinuous \Rightarrow Kronecker.
In the second part we will give a sketch of the proof
\((X, \mu, T)\) is ergodic loosely Kronecker \(\Rightarrow\) there exists a Borel set
\(M \subset X\) with \(\mu(M) = 1\) such that \(\rho_{FK}(x, y) = 0\) for every \(x, y \in M\).
In the second part we will give a sketch of the proof

(X, μ, T) is ergodic loosely Kronecker \Rightarrow there exists a Borel set $M \subset X$ with $\mu(M) = 1$ such that $\rho_{FK}(x, y) = 0$ for every $x, y \in M$.

Thank you
Sketch

- We will give a sketch of the proof
 \((X, \mu, T)\) is ergodic loosely Kronecker \(\Rightarrow\) there exists a Borel set \(M \subset X\) with \(\mu(M) = 1\) such that \(\rho_{FK}(x, y) = 0\) for every \(x, y \in M\).
We will give a sketch of the proof

(X, μ, T) is ergodic loosely Kronecker \Rightarrow there exists a Borel set $M \subset X$ with $\mu(M) = 1$ such that $\rho_{FK}(x, y) = 0$ for every $x, y \in M$.

Claim 1: If (X, μ, T) is ergodic and loosely Kronecker, then for every $\varepsilon > 0$, there exists a Borel set B with positive measure such that $\rho_{FK}(x, y) \leq \varepsilon$.

Proof of claim: Since (X, μ, T) is LK there exists a compact abelian group G and $g \in G$, so that (G, ν, R) is Kakutani equivalent to (X, μ, T), where ν is the Haar measure on G and $Rx = g \cdot x$ (isometry).
Sketch

- We will give a sketch of the proof
 \((X, \mu, T)\) is ergodic loosely Kronecker \(\Rightarrow\) there exists a Borel set
 \(M \subset X\) with \(\mu(M) = 1\) such that \(\rho_{FK}(x, y) = 0\) for every \(x, y \in M\).

- **Claim 1:** If \((X, \mu, T)\) is ergodic and loosely Kronecker, then for every
 \(\varepsilon > 0\), there exists a Borel set \(B\) with positive measure such that
 \(\rho_{FK}(x, y) \leq \varepsilon\).

- Proof of claim: Since \((X, \mu, T)\) is LK there exists a compact abelian
 group \(G\) and \(g \in G\), so that \((G, \nu_h, R)\) is Kakutani equivalent to
 \((X, \mu, T)\).
We will give a sketch of the proof

\((X, \mu, T)\) is ergodic loosely Kronecker \(\Rightarrow\) there exists a Borel set \(M \subset X\) with \(\mu(M) = 1\) such that \(\rho_{FK}(x, y) = 0\) for every \(x, y \in M\).

Claim 1: If \((X, \mu, T)\) is ergodic and loosely Kronecker, then for every \(\varepsilon > 0\), there exists a Borel set \(B\) with positive measure such that \(\rho_{FK}(x, y) \leq \varepsilon\).

Proof of claim: Since \((X, \mu, T)\) is LK there exists a compact abelian group \(G\) and \(g \in G\), so that \((G, \nu_h, R)\) is Kakutani equivalent to \((X, \mu, T)\).

where \(\nu_h\) is the Haar measure on \(G\) and \(Rx = g \cdot x\) (isometry).
Proof

Let $\varepsilon > 0$. By ORW, there exists a Borel set $B \subset G$ with $\mu_h(B) \geq 1 - \varepsilon/2$, such that (X, μ, T) is isomorphic to (A, ν_A, R_A), using $\phi : X \to A$.
Proof

- Let $\varepsilon > 0$. By ORW, there exists a Borel set $B \subset G$ with $\mu_h(B) \geq 1 - \varepsilon / 2$, such that (X, μ, T) is isomorphic to (A, ν_A, R_A), using $\phi : X \to A$.
- By Lusin’s theorem there exists a compact sets $M \subset X$ with $\mu(M) \nu(A) \geq 1 - \varepsilon / 3$ such that $\phi|_M : M \to \phi(M)$ is (uniformly) continuous.
Proof

Let \(\varepsilon > 0 \). By ORW, there exists a Borel set \(B \subset G \) with \(\mu_h(B) \geq 1 - \varepsilon / 2 \), such that \((X, \mu, T) \) is isomorphic to \((A, \nu_A, R_A) \), using \(\phi : X \to A \).

By Lusin’s theorem there exists a compact sets \(M \subset X \) with \(\mu(M) \nu(A) \geq 1 - \varepsilon / 3 \) such that \(\phi|_M : M \to \phi(M) \) is (uniformly) continuous.

There exists \(\delta > 0 \) is such that if \(x, y \in M \) and \(d(x, y) \leq \delta \) then \(d(\phi^{-1} R^n \phi(x), \phi^{-1} R^n \phi(y)) \leq \varepsilon \) for every \(n \in \mathbb{N} \) with \(R^n \phi(x), R^n \phi(x) \in \phi(M) \) (1).
Proof

- Let $\varepsilon > 0$. By ORW, there exists a Borel set $B \subset G$ with $\mu_h(B) \geq 1 - \varepsilon/2$, such that (X, μ, T) is isomorphic to (A, ν_A, R_A), using $\phi: X \to A$.

- By Lusin’s theorem there exists a compact sets $M \subset X$ with $\mu(M)\nu(A) \geq 1 - \varepsilon/3$ such that $\phi|_M: M \to \phi(M)$ is (uniformly) continuous.

- There exists $\delta > 0$ is such that if $x, y \in M$ and $d(x, y) \leq \delta$ then $d(\phi^{-1}R^n\phi(x), \phi^{-1}R^n\phi(y)) \leq \varepsilon$ for every $n \in \mathbb{N}$ with $R^n\phi(x), R^n\phi(x) \in \phi(M)$ (1).

- Now, let $Y_M \subset \phi(M)$ be the set of points in $\phi(M)$ which are ν-generic for $\phi(M)$ with respect to the map S.
Proof

- Let $\varepsilon > 0$. By ORW, there exists a Borel set $B \subset G$ with
 $\mu_h(B) \geq 1 - \varepsilon/2$, such that (X, μ, T) is isomorphic to (A, ν_A, R_A),
 using $\phi : X \to A$.

- By Lusin’s theorem there exists a compact sets $M \subset X$ with
 $\mu(M)\nu(A) \geq 1 - \varepsilon/3$ such that $\phi|M : M \to \phi(M)$ is (uniformly)
 continuous.

- There exists $\delta > 0$ is such that if $x, y \in M$ and $d(x, y) \leq \delta$ then
 $d(\phi^{-1}R^n\phi(x), \phi^{-1}R^n\phi(y)) \leq \varepsilon$ for every $n \in \mathbb{N}$ with
 $R^n\phi(x), R^n\phi(x) \in \phi(M)$ (1).

- Now, let $Y_M \subset \phi(M)$ be the set of points in $\phi(M)$ which are
 ν-generic for $\phi(M)$ with respect to the map S.

- Thus, we have $\nu(Y_M) = \nu(\phi(M))$, so there is $z \in M$ such that
 \[\mu(B_{\delta/2}(z) \cap M \cap \phi^{-1}(Y_M)) > 0. \]
Let $x, y \in B_{\delta/2}(z) \cap M \cap \phi^{-1}Y_M$ (this is our B). We will show that $\rho_{FK}(x, y) \leq \varepsilon$.
Let $x, y \in B_{\delta/2}(z) \cap M \cap \phi^{-1} Y_M$ (this is our B). We will show that $\rho_{FK}(x, y) \leq \varepsilon$.

Strategy: find a δ-match for the R_A orbits of $\phi(y)$ and $\phi(z)$ that only matches points on $\phi(Y_M)$.

F. García-Ramos ()
Sketch

- Let $x, y \in B_{\delta/2}(z) \cap M \cap \phi^{-1} Y_M$ (this is our B). We will show that $\rho_{FK}(x, y) \leq \varepsilon$.
- Strategy: find a δ-match for the R_A orbits of $\phi(y)$ and $\phi(z)$ that only matches points on $\phi(Y_M)$.
- Use (1) to get ε-match for the T orbits of x and y.
Sketch

- Let \(x, y \in B_{\delta/2}(z) \cap M \cap \phi^{-1} Y_M \) (this is our \(B \)). We will show that \(\rho_{FK}(x, y) \leq \varepsilon \).
- Strategy: find a \(\delta \)-match for the \(R_A \) orbits of \(\phi(y) \) and \(\phi(z) \) that only matches points on \(\phi(Y_M) \).
- Use (1) to get \(\varepsilon \)-match for the \(T \) orbits of \(x \) and \(y \).
- (see picture)
We define

\[c_{x'}(n) := \left| \{ 0 \leq i \leq n : R^i x' \in A \} \right| , \]
We define

\[c_{x'}(n) := \left| \{ 0 \leq i \leq n: R^i x' \in A \} \right|, \]

\[E_M(x', y') := \{ n \in \mathbb{N} : R^n \phi(x'), R^n \phi(y') \in \phi(M) \}, \]
We define

\[c_{x'}(n) := \left| \left\{ 0 \leq i \leq n : R^i x' \in A \right\} \right| , \]

\[E_M(x', y') := \left\{ n \in \mathbb{N} : R^n \phi(x'), R^n \phi(y') \in \phi(M) \right\} , \]

and

\[S := c_x \left\{ E_M(x, y) \right\} , \text{ and} \]
\[S' := c_y \left\{ E_M(x, y) \right\} . \]
Now, set \(\pi \) as the order preserving bijective map \(\pi : S \rightarrow S' \).
Now, set \(\pi \) as the order preserving bijective map \(\pi : S \rightarrow S' \).

One can check that for every \(i \in S \) there exists \(j \) such that
\[
d_G(R_B^i \phi(x), R_B^{\pi(i)} \phi(y)) = d_G(R_B^j \phi(x), R_B^j \phi(y)) = d(\phi(x), \phi(y)) \leq \delta'.
\]
Now, set π as the order preserving bijective map $\pi : S \rightarrow S'$.

One can check that for every $i \in S$ there exists j such that
$$d_G(R^i_B \phi(x), R^{\pi(i)}_B \phi(y)) = d_G(R^j_B \phi(x), R^j_B \phi(y)) = d(\phi(x), \phi(y)) \leq \delta'.$$

With this we obtain a δ'-match for the R_A orbits of $\phi(y)$ and $\phi(z)$, matches points on $\phi(M)$.

Now, set π as the order preserving bijective map $\pi : S \rightarrow S'$.

One can check that for every $i \in S$ there exists j such that

$$d_G(R^i_B \phi(x), R^{\pi(i)}_B \phi(y)) = d_G(R^j \phi(x), R^j \phi(y)) = d(\phi(x), \phi(y)) \leq \delta'.$$

With this we obtain a δ'-match for the R_A orbits of $\phi(y)$ and $\phi(z)$, matches points on $\phi(M)$.

Since $y, z \in \phi^{-1} Y_M$ then

$$\overline{D}(S), \overline{D}(S') \geq \overline{D}(E_M(y, z)) \geq 1 - \epsilon.$$
Now, set π as the order preserving bijective map $\pi : S \rightarrow S'$.

One can check that for every $i \in S$ there exists j such that
\[d_G(R_B^i \phi(x), R_B^{\pi(i)} \phi(y)) = d_G(R_B^j \phi(x), R_B^j \phi(y)) = d(\phi(x), \phi(y)) \leq \delta'.\]

With this we obtain a δ'-match for the R_A orbits of $\phi(y)$ and $\phi(z)$, matches points on $\phi(M)$.

Since $y, z \in \phi^{-1} Y_M$ then
\[
\overline{D}(S), \overline{D}(S') \geq \overline{D}(E_M(y, z)) \geq 1 - \varepsilon.
\]

Thus $\rho_{FK}(y, z) \leq \varepsilon$ (we finish the claim).
Now we can use the fact that \(\rho_{FK}(x, Tx) = 0 \), to prove that there exists a Borel set \(M_\varepsilon \subset X \) with \(\mu(M_\varepsilon) = 1 \) such that \(\rho_{FK}(x, y) \leq \varepsilon \) for every \(x, y \in M_\varepsilon \).
Proof

Now we can use the fact that $\rho_{FK}(x, Tx) = 0$, to prove that there exists a Borel set $M_\varepsilon \subset X$ with $\mu(M_\varepsilon) = 1$ such that $\rho_{FK}(x, y) \leq \varepsilon$ for every $x, y \in M_\varepsilon$.

We conclude the result.
Proof

- Now we can use the fact that $\rho_{FK}(x, Tx) = 0$, to prove that there exists a Borel set $M_\varepsilon \subset X$ with $\mu(M_\varepsilon) = 1$ such that $\rho_{FK}(x, y) \leq \varepsilon$ for every $x, y \in M_\varepsilon$.

- We conclude the result.

- Note that if we assume that the map is uniquely ergodic we do not get directly that $\rho_{FK}(x, y) = 0$ for every $x, y \in M$.

Proof

- Now we can use the fact that $\rho_{FK}(x, Tx) = 0$, to prove that there exists a Borel set $M_\varepsilon \subset X$ with $\mu(M_\varepsilon) = 1$ such that $\rho_{FK}(x, y) \leq \varepsilon$ for every $x, y \in M_\varepsilon$.
- We conclude the result.
- Note that if we assume that the map is uniquely ergodic we do not get directly that $\rho_{FK}(x, y) = 0$ for every $x, y \in M$.
- This proof has to be done with a different approach.