Stabilized automorphism groups and local P entropy

Scott Schmieding

University of Denver

June 18, 2020
1. Stabilized automorphism groups
2. Local \mathcal{P} entropy
3. Local PS entropy for stabilized groups
4. Distinguishing stabilized automorphism groups of SFT’s
1. Stabilized automorphism groups

2. Local \mathcal{P} entropy

3. Local PS entropy for stabilized groups

4. Distinguishing stabilized automorphism groups of SFT’s
Let $T: X \rightarrow X$ be a homeomorphism of a compact metric space.
Let $T : X \to X$ be a homeomorphism of a compact metric space.

An *automorphism* of $T : X \to X$ is a homeomorphism $\phi : X \to X$ such that $\phi T = T \phi$.
Let $T: X \to X$ be a homeomorphism of a compact metric space.

An *automorphism* of $T: X \to X$ is a homeomorphism $\phi: X \to X$ such that $\phi T = T \phi$.

The collection of all automorphisms of $T: X \to X$ forms a group denoted Aut(T).
Some examples:
Some examples:

- \(W = \mathbb{Z}/5\mathbb{Z}, \ T(n) = n + 1 \mod 5 \quad \leadsto \quad \text{Aut}(T) \cong \mathbb{Z}/5 \).

Let \((X_n, \sigma_n) = \text{full shift on } n \text{ symbols} \). \(\text{Aut}(\sigma_n) \) first studied by Hedlund and others in late 60's.
Examples

Some examples:

- \(W = \mathbb{Z}/5\mathbb{Z}, \ T(n) = n + 1 \mod 5 \leadsto \text{Aut}(T) \cong \mathbb{Z}/5. \)

- \((X, \sigma_X) = \text{Sturmian subshift} \leadsto \text{Aut}(\sigma_X) \cong \mathbb{Z}. \)
Examples

Some examples:

- \(W = \mathbb{Z}/5\mathbb{Z}, \ T(n) = n + 1 \mod 5 \implies \text{Aut}(T) \cong \mathbb{Z}/5. \)

- \((X, \sigma_X) = \text{Sturmian subshift} \implies \text{Aut}(\sigma_X) \cong \mathbb{Z}. \)

- \((Y, \sigma_Y) = \text{subshift from Thue-Morse sequence} \implies \text{Aut}(\sigma_Y) \cong \mathbb{Z} \oplus \mathbb{Z}/2. \)

Let \((X_n, \sigma_n) = \text{full shift on } n \text{ symbols}. \)
Examples

Some examples:

- $W = \mathbb{Z}/5\mathbb{Z}$, $T(n) = n + 1 \mod 5 \implies \text{Aut}(T) \cong \mathbb{Z}/5$.

- $(X, \sigma_X) = \text{Sturmian subshift} \implies \text{Aut}(\sigma_X) \cong \mathbb{Z}$.

- $(Y, \sigma_Y) = \text{subshift from Thue-Morse sequence} \implies \text{Aut}(\sigma_Y) \cong \mathbb{Z} \oplus \mathbb{Z}/2$.

- $(Z, \sigma_Z) = \text{mixing shift of finite type} \implies \text{Aut}(\sigma_Z) \text{ large}$.

Let $(X_n, \sigma_n) = \text{full shift on } n \text{ symbols}$.

$\text{Aut}(\sigma_n)$ first studied by Hedlund and others in late 60's.
Some examples:

- $W = \mathbb{Z}/5\mathbb{Z}, \ T(n) = n + 1 \mod 5 \quad \sim \rightarrow \quad \text{Aut}(T) \cong \mathbb{Z}/5$.

- $(X, \sigma_X) = \text{Sturmian subshift} \quad \sim \rightarrow \quad \text{Aut}(\sigma_X) \cong \mathbb{Z}$.

- $(Y, \sigma_Y) = \text{subshift from Thue-Morse sequence} \quad \sim \rightarrow \quad \text{Aut}(\sigma_Y) \cong \mathbb{Z} \oplus \mathbb{Z}/2$.

- $(Z, \sigma_Z) = \text{mixing shift of finite type} \quad \sim \rightarrow \quad \text{Aut}(\sigma_Z) \text{ large}$.

Let $(X_n, \sigma_n) = \text{full shift on } n \text{ symbols}$.

$\text{Aut}(\sigma_n)$ first studied by Hedlund and others in late 60’s.
Despite many years, $\text{Aut}(\sigma_n)$ is still quite mysterious. For example:

- What is the abelianization $\text{Aut}(\sigma_n)_{ab}$?
- For which m, n is $\text{Aut}(\sigma_m)$ isomorphic to $\text{Aut}(\sigma_n)$?

We know $\text{Aut}(\sigma_2)$ is not isomorphic to $\text{Aut}(\sigma_4)$.

This is an exercise using: Theorem (Ryan's Theorem)

The center of $\text{Aut}(\sigma_n)$ is generated by σ_n.

But, for example, we can't distinguish any two of: $\text{Aut}(\sigma_2), \text{Aut}(\sigma_3), \text{Aut}(\sigma_6)$.
Despite many years, $\text{Aut}(\sigma_n)$ is still quite mysterious. For example:

- What is the abelianization $\text{Aut}(\sigma_n)^{ab}$?
Despite many years, $\text{Aut}(\sigma_n)$ is still quite mysterious. For example:

- What is the abelianization $\text{Aut}(\sigma_n)_{ab}$?

- For which m, n is $\text{Aut}(\sigma_m)$ isomorphic to $\text{Aut}(\sigma_n)$?
Despite many years, Aut(\(\sigma_n\)) is still quite mysterious. For example:

- What is the abelianization Aut(\(\sigma_n\))_{ab}?

- For which \(m, n\) is Aut(\(\sigma_m\)) isomorphic to Aut(\(\sigma_n\))?

We know Aut(\(\sigma_2\)) is not isomorphic to Aut(\(\sigma_4\)).
Despite many years, Aut(\(\sigma_n\)) is still quite mysterious. For example:

- What is the abelianization Aut(\(\sigma_n\))_ab?

- For which m, n is Aut(\(\sigma_m\)) isomorphic to Aut(\(\sigma_n\))?

We know Aut(\(\sigma_2\)) is not isomorphic to Aut(\(\sigma_4\)).

This is an exercise using:

Theorem (Ryan’s Theorem)

The center of Aut(\(\sigma_n\)) is generated by \(\sigma_n\).
Despite many years, $\text{Aut}(\sigma_n)$ is still quite mysterious. For example:

- What is the abelianization $\text{Aut}(\sigma_n)_{ab}$?

- For which m, n is $\text{Aut}(\sigma_m)$ isomorphic to $\text{Aut}(\sigma_n)$?

We know $\text{Aut}(\sigma_2)$ is not isomorphic to $\text{Aut}(\sigma_4)$.

This is an exercise using:

Theorem (Ryan’s Theorem)

*The center of $\text{Aut}(\sigma_n)$ is generated by σ_n.**

But, for example, we can’t distinguish any two of:

\[
\text{Aut}(\sigma_2) \quad \text{Aut}(\sigma_3) \quad \text{Aut}(\sigma_6)
\]
For a system \((X, T)\) where \(T: X \to X\) is a homeomorphism, \(X\) compact metric, the *stabilized automorphism group* is

\[
\text{Aut}^{(\infty)}(T) = \bigcup_{k=1}^{\infty} \text{Aut}(T^k).
\]
Stabilization

For a system \((X, T)\) where \(T: X \to X\) is a homeomorphism, \(X\) compact metric, the \textit{stabilized automorphism group} is

\[
\text{Aut}^{(\infty)}(T) = \bigcup_{k=1}^{\infty} \text{Aut}(T^k).
\]

For example:

- If \(T: \mathbb{Z}/5 \to \mathbb{Z}/5, T(n) = n + 1 \mod 5\) \(\mapsto\) \(\text{Aut}^{(\infty)}(T) \cong \text{Sym}(5)\).
For a system \((X, T)\) where \(T : X \to X\) is a homeomorphism, \(X\) compact metric, the *stabilized automorphism group* is

\[
\text{Aut}^{(\infty)}(T) = \bigcup_{k=1}^{\infty} \text{Aut}(T^k).
\]

For example:

- If \(T : \mathbb{Z}/5 \to \mathbb{Z}/5\), \(T(n) = n + 1 \mod 5\) \(\leadsto\) \(\text{Aut}^{(\infty)}(T) \cong \text{Sym}(5)\).

- If \((X, \sigma_X)\) is a Sturmian subshift \(\leadsto\) \(\text{Aut}^{(\infty)}(\sigma) \cong \text{Aut}(\sigma_X) \cong \mathbb{Z}\).
For a system \((X, T)\) where \(T: X \to X\) is a homeomorphism, \(X\) compact metric, the *stabilized automorphism group* is

\[
\text{Aut}^{(\infty)}(T) = \bigcup_{k=1}^{\infty} \text{Aut}(T^k).
\]

For example:

- If \(T: \mathbb{Z}/5 \to \mathbb{Z}/5, T(n) = n + 1 \mod 5\) \(\sim\) \(\text{Aut}^{(\infty)}(T) \cong \text{Sym}(5)\).

- If \((X, \sigma_X)\) is a Sturmian subshift \(\sim\) \(\text{Aut}^{(\infty)}(\sigma) \cong \text{Aut}(\sigma_X) \cong \mathbb{Z}\).

If \((X, \sigma)\) is a non-trivial SFT, then \(\text{Aut}(\sigma^k) \subset \text{Aut}(\sigma^{mk})\) is proper for any \(k \geq 1, m \geq 2\).
For a system \((X, T)\) where \(T: X \to X\) is a homeomorphism, \(X\) compact metric, the stabilized automorphism group is

\[
\text{Aut}^{(\infty)}(T) = \bigcup_{k=1}^{\infty} \text{Aut}(T^k).
\]

For example:

- If \(T: \mathbb{Z}/5 \to \mathbb{Z}/5, T(n) = n + 1 \text{ mod } 5\) \(\leadsto\) \(\text{Aut}^{(\infty)}(T) \cong \text{Sym}(5)\).

- If \((X, \sigma_X)\) is a Sturmian subshift \(\leadsto\) \(\text{Aut}^{(\infty)}(\sigma) \cong \text{Aut}(\sigma_X) \cong \mathbb{Z}\).

If \((X, \sigma)\) is a non-trivial SFT, then \(\text{Aut}(\sigma^k) \subset \text{Aut}(\sigma^{mk})\) is proper for any \(k \geq 1, m \geq 2\).

Concrete example: bit flip every other symbol
Stabilization

For a system \((X, T)\) where \(T: X \to X\) is a homeomorphism, \(X\) compact metric, the \textit{stabilized automorphism group} is

\[
\text{Aut}^{(\infty)}(T) = \bigcup_{k=1}^{\infty} \text{Aut}(T^k).
\]

For example:

- If \(T: \mathbb{Z}/5 \to \mathbb{Z}/5, T(n) = n + 1 \mod 5\) \(\sim\) \text{Aut}^{(\infty)}(T) \cong \text{Sym}(5).

- If \((X, \sigma_X)\) is a Sturmian subshift \(\sim\) \text{Aut}^{(\infty)}(\sigma) \cong \text{Aut}(\sigma_X) \cong \mathbb{Z}.

If \((X, \sigma)\) is a non-trivial SFT, then \text{Aut}(\sigma^k) \subset \text{Aut}(\sigma^{mk})\) is proper for any \(k \geq 1, m \geq 2\).

Concrete example: bit flip every other symbol

\[
\ldots 0100010111010101010000100101010101010101010101\ldots
\]
For a system \((X, T)\) where \(T : X \to X\) is a homeomorphism, \(X\) compact metric, the stabilized automorphism group is

\[
\text{Aut}^{(\infty)}(T) = \bigcup_{k=1}^{\infty} \text{Aut}(T^k).
\]

For example:

- If \(T : \mathbb{Z}/5 \to \mathbb{Z}/5\), \(T(n) = n + 1 \mod 5\) \(\leadsto\) \(\text{Aut}^{(\infty)}(T) \cong \text{Sym}(5)\).

- If \((X, \sigma_X)\) is a Sturmian subshift \(\leadsto\) \(\text{Aut}^{(\infty)}(\sigma) \cong \text{Aut}(\sigma_X) \cong \mathbb{Z}\).

If \((X, \sigma)\) is a non-trivial SFT, then \(\text{Aut}(\sigma^k) \subset \text{Aut}(\sigma^{mk})\) is proper for any \(k \geq 1, m \geq 2\).

Concrete example: bit flip every other symbol

\[
\ldots 0100101110101010100010010010101010101\ldots
\]
For a system \((X, T)\) where \(T: X \to X\) is a homeomorphism, \(X\) compact metric, the \textit{stabilized automorphism group} is

\[
\text{Aut}^{(\infty)}(T) = \bigcup_{k=1}^{\infty} \text{Aut}(T^k).
\]

For example:

- If \(T: \mathbb{Z}/5 \to \mathbb{Z}/5, T(n) = n + 1 \mod 5 \sim \text{Aut}^{(\infty)}(T) \cong \text{Sym}(5)\).

- If \((X, \sigma_X)\) is a Sturmian subshift \(\sim \text{Aut}^{(\infty)}(\sigma) \cong \text{Aut}(\sigma_X) \cong \mathbb{Z}\).

If \((X, \sigma)\) is a non-trivial SFT, then \(\text{Aut}(\sigma^k) \subset \text{Aut}(\sigma^{mk})\) is proper for any \(k \geq 1, m \geq 2\).

Concrete example: bit flip every other symbol

\[
\ldots 010001011101010101000100101010101 \ldots
\]

\[
\downarrow
\]

\[
\ldots 000100001000000000010001110000000000 \ldots
\]
Stabilization

For a system \((X, T)\) where \(T : X \to X\) is a homeomorphism, \(X\) compact metric, the stabilized automorphism group is

\[
\text{Aut}^{(\infty)}(T) = \bigcup_{k=1}^{\infty} \text{Aut}(T^k).
\]

For example:

- If \(T : \mathbb{Z}/5 \to \mathbb{Z}/5, T(n) = n + 1 \mod 5\) \(\leadsto\) \(\text{Aut}^{(\infty)}(T) \cong \text{Sym}(5)\).

- If \((X, \sigma_X)\) is a Sturmian subshift \(\leadsto\) \(\text{Aut}^{(\infty)}(\sigma) \cong \text{Aut}(\sigma_X) \cong \mathbb{Z}\).

If \((X, \sigma)\) is a non-trivial SFT, then \(\text{Aut}(\sigma^k) \subset \text{Aut}(\sigma^{mk})\) is proper for any \(k \geq 1, m \geq 2\).

Concrete example: bit flip every other symbol

\[
\ldots 010001011101010101000100101010101 \ldots
\]

\[
\Downarrow
\]

\[
\ldots 000100001000000000001000111000000000 \ldots
\]

is in \(\text{Aut}(\sigma^2_X)\) but not \(\text{Aut}(\sigma_2)\).
- For any system $\langle X, T \rangle$ and $k \geq 1$, $\text{Aut}^{(\infty)}(T) = \text{Aut}^{(\infty)}(T^k)$.
Some properties

- For any system \((X, T)\) and \(k \geq 1\), \(\text{Aut}^{(\infty)}(T) = \text{Aut}^{(\infty)}(T^k)\).

- If \((X, T)\) and \((Y, S)\) are topologically conjugate, then \(\text{Aut}^{(\infty)}(T) \cong \text{Aut}^{(\infty)}(S)\).
- For any system \((X, T)\) and \(k \geq 1\), \(\text{Aut}^{(\infty)}(T) = \text{Aut}^{(\infty)}(T^k)\).

- If \((X, T)\) and \((Y, S)\) are topologically conjugate, then \(\text{Aut}^{(\infty)}(T) \cong \text{Aut}^{(\infty)}(S)\).

- For a subshift \((X, \sigma)\), \(\text{Aut}^{(\infty)}(\sigma)\) is countable.
- For any system \((X, T)\) and \(k \geq 1\), \(\text{Aut}^{(\infty)}(T) = \text{Aut}^{(\infty)}(T^k)\).

- If \((X, T)\) and \((Y, S)\) are topologically conjugate, then \(\text{Aut}^{(\infty)}(T) \cong \text{Aut}^{(\infty)}(S)\).

- For a subshift \((X, \sigma)\), \(\text{Aut}^{(\infty)}(\sigma)\) is countable.

It follows that:

Proposition

Let \(m, n \geq 2\). If \(n^k = m^j\), then

\[
\text{Aut}^{(\infty)}(\sigma_{n^k}) \cong \text{Aut}^{(\infty)}(\sigma_{m^j}).
\]
Some properties

- For any system \((X, T)\) and \(k \geq 1\), \(\text{Aut}^{(\infty)}(T) = \text{Aut}^{(\infty)}(T^k)\).

- If \((X, T)\) and \((Y, S)\) are topologically conjugate, then \(\text{Aut}^{(\infty)}(T) \cong \text{Aut}^{(\infty)}(S)\).

- For a subshift \((X, \sigma)\), \(\text{Aut}^{(\infty)}(\sigma)\) is countable.

It follows that:

Proposition

\[\text{Let } m, n \geq 2. \text{ If } n^k = mj, \text{ then} \]

\[\text{Aut}^{(\infty)}(\sigma_{n^k}) \cong \text{Aut}^{(\infty)}(\sigma_{mj}).\]

For example,

\[\text{Aut}^{(\infty)}(\sigma_2) \cong \text{Aut}^{(\infty)}(\sigma_4) \cong \text{Aut}^{(\infty)}(\sigma_8) \ldots\]
Why $\text{Aut}^{(\infty)}(\sigma)$?
Why $\text{Aut}^{(\infty)}(\sigma)$?

- Historically, success with ’stable’ results in SFT setting, e.g. classification of SFT’s up to eventual conjugacy.
Motivation

Why $\text{Aut}^{(\infty)}(\sigma)$?

- Historically, success with ’stable’ results in SFT setting, e.g. classification of SFT’s up to eventual conjugacy.
- Parallels with algebraic K-theory:

$$GL_k(\mathcal{R})_{ab} =??$$
Motivation

Why \(\text{Aut}^{(\infty)}(\sigma) \)?

- Historically, success with 'stable' results in SFT setting, e.g. classification of SFT's up to eventual conjugacy.

- Parallels with algebraic K-theory:

\[
GL_k(\mathcal{R})_{ab} = ??
\]

Whitehead, 1950: consider \(GL(\mathcal{R}) = \bigcup_{k=1}^{\infty} GL_k(\mathcal{R}) \). Then

\[
[GL(\mathcal{R}), GL(\mathcal{R})] = El(\mathcal{R}) = \text{group gen. by elementary matrices}.
\]

Led to defining \(K_1(\mathcal{R}) = GL(\mathcal{R})_{ab} \).
Motivation

Why $\text{Aut}^{(\infty)}(\sigma)$?

- Historically, success with 'stable' results in SFT setting, e.g. classification of SFT's up to eventual conjugacy.

- Parallels with algebraic K-theory:

 $$GL_k(\mathcal{R})_{ab} = ??$$

 Whitehead, 1950: consider $GL(\mathcal{R}) = \bigcup_{k=1}^{\infty} GL_k(\mathcal{R})$. Then

 $$[GL(\mathcal{R}), GL(\mathcal{R})] = El(\mathcal{R}) = \text{group gen. by elementary matrices}.$$

 Led to defining $K_1(\mathcal{R}) = GL(\mathcal{R})_{ab}$.

Similarily, for us,

$$\text{Aut}(\sigma_n^k)_{ab} = ??$$
Motivation

Why Aut\(^{(\infty)}(\sigma)\)?

- Historically, success with 'stable' results in SFT setting, e.g. classification of SFT’s up to eventual conjugacy.

- Parallels with algebraic K-theory:

\[GL_k(\mathcal{R})_{ab} = ?? \]

Whitehead, 1950: consider \(GL(\mathcal{R}) = \bigcup_{k=1}^{\infty} GL_k(\mathcal{R}) \). Then

\[[GL(\mathcal{R}), GL(\mathcal{R})] = El(\mathcal{R}) = \text{group gen. by elementary matrices} \]

Led to defining \(K_1(\mathcal{R}) = GL(\mathcal{R})_{ab} \).

Similarly, for us,

\[Aut(\sigma_n^k)_{ab} = ?? \]

but we understand \([Aut^{(\infty)}(\sigma_n), Aut^{(\infty)}(\sigma_n)]\).
For a mixing SFT defined by a primitive $\mathbb{Z}_+\text{-matrix } A$ there is a homomorphism called the dimension representation

$$\pi_A : \text{Aut}(\sigma_A) \rightarrow \text{Aut}(G_A, G_A^+, \delta_A)$$

where:

- G_A is the dimension group associated to A
- G_A^+ is a positive cone in G_A
- δ_A is a distinguished automorphism of G_A.

For full shifts, the dimension representation is a surjective homomorphism

$$\pi_n : \text{Aut}(\sigma_n) \rightarrow \mathbb{Z}^\omega(n)$$

where $\omega(n) = \# \text{distinct primes dividing } n$.

Note: π_A is defined using dynamical data, not group theoretically!

Definition: Inert (σ_A) = ker π_A
The dimension representation

For a mixing SFT defined by a primitive \mathbb{Z}_+^+-matrix A there is a homomorphism called the dimension representation

$$\pi_A : \text{Aut}(\sigma_A) \rightarrow \text{Aut}(G_A, G_A^+, \delta_A)$$

where:

- G_A is the dimension group associated to A
For a mixing SFT defined by a primitive $\mathbb{Z}_+\text{-}matrix A$ there is a homomorphism called the dimension representation

$$\pi_A : \text{Aut}(\sigma_A) \rightarrow \text{Aut}(G_A, G_A^+, \delta_A)$$

where:

- G_A is the dimension group associated to A
- G_A^+ is a positive cone in G_A

Note: π_A is defined using dynamical data, not group theoretically!

Definition: Inert $(\sigma_A) = \ker \pi_A$
The dimension representation

For a mixing SFT defined by a primitive $\mathbb{Z}_+\text{-matrix } A$ there is a homomorphism called the dimension representation

$$\pi_A : \text{Aut}(\sigma_A) \rightarrow \text{Aut}(G_A, G^+_A, \delta_A)$$

where:

- G_A is the dimension group associated to A
- G^+_A is a positive cone in G_A
- δ_A is a distinguished automorphism of G_A.

For full shifts, the dimension representation is a surjective homomorphism

$$\pi_n : \text{Aut}(\sigma_n) \rightarrow \mathbb{Z}^\omega(n) \quad \omega(n) = \# \text{distinct primes dividing } n.$$
The dimension representation

For a mixing SFT defined by a primitive $\mathbb{Z}_+\text{-matrix } A$ there is a homomorphism called the dimension representation

$$\pi_A : \text{Aut}(\sigma_A) \to \text{Aut}(G_A, G_A^+, \delta_A)$$

where:

- G_A is the dimension group associated to A
- G_A^+ is a positive cone in G_A
- δ_A is a distinguished automorphism of G_A.

For full shifts, the dimension representation is a surjective homomorphism

$$\pi_n : \text{Aut}(\sigma_n) \to \mathbb{Z}^{\omega(n)}$$

$$\omega(n) = \# \text{ distinct primes dividing } n.$$
For a mixing SFT defined by a primitive $\mathbb{Z}_+\text{-matrix} A$ there is a homomorphism called the dimension representation

$$\pi_A : \text{Aut}(\sigma_A) \rightarrow \text{Aut}(G_A, G_A^+, \delta_A)$$

where:

- G_A is the dimension group associated to A
- G_A^+ is a positive cone in G_A
- δ_A is a distinguished automorphism of G_A.

For full shifts, the dimension representation is a surjective homomorphism

$$\pi_n : \text{Aut}(\sigma_n) \rightarrow \mathbb{Z}^{\omega(n)}$$

$$\omega(n) = \# \text{ distinct primes dividing } n.$$

Note: π_A is defined using dynamical data, not group theoretically!
The dimension representation

For a mixing SFT defined by a primitive $\mathbb{Z}_+\text{-matrix } A$ there is a homomorphism called the dimension representation

$$\pi_A : \text{Aut}(\sigma_A) \rightarrow \text{Aut}(G_A, G_A^+, \delta_A)$$

where:

- G_A is the dimension group associated to A
- G_A^+ is a positive cone in G_A
- δ_A is a distinguished automorphism of G_A.

For full shifts, the dimension representation is a surjective homomorphism

$$\pi_n : \text{Aut}(\sigma_n) \rightarrow \mathbb{Z}^{\omega(n)}$$

$$\omega(n) = \# \text{ distinct primes dividing } n.$$

Note: π_A is defined using dynamical data, *not* group theoretically!

Definition: $\text{Inert}(\sigma_A) = \ker \pi_A$
Together with Bryna Kra and Yair Hartman, we studied $\text{Aut}^{(\infty)}(\sigma_n)$, and proved the following:
Together with Bryna Kra and Yair Hartman, we studied $\text{Aut}^{(\infty)}(\sigma_n)$, and proved the following:

Theorem (Hartman-Kra-S.)

The dimension representation $\pi_n : \text{Aut}(\sigma_n) \rightarrow \mathbb{Z}^{\omega(n)}$ extends to a ‘stabilized’ dimension representation

$$\pi_n^{(\infty)} : \text{Aut}^{(\infty)}(\sigma_n) \rightarrow \mathbb{Z}^{\omega(n)}$$

and this homomorphism $\pi^{(\infty)}$ is the abelianization of $\text{Aut}^{(\infty)}(\sigma_n)$.
Together with Bryna Kra and Yair Hartman, we studied $\text{Aut}^{(\infty)}(\sigma_n)$, and proved the following:

Theorem (Hartman-Kra-S.)

The dimension representation $\pi_n: \text{Aut}(\sigma_n) \to \mathbb{Z}^{\omega(n)}$ extends to a ‘stabilized’ dimension representation

$$\pi_n^{(\infty)}: \text{Aut}^{(\infty)}(\sigma_n) \to \mathbb{Z}^{\omega(n)}$$

and this homomorphism $\pi^{(\infty)}$ is the abelianization of $\text{Aut}^{(\infty)}(\sigma_n)$.

And as a corollary, we get:

Corollary (Hartman-Kra-S.)

If $\text{Aut}^{(\infty)}(\sigma_m)$ *is isomorphic to* $\text{Aut}^{(\infty)}(\sigma_n)$, *then* $\omega(m) = \omega(n)$. *So, for example,*

$$\text{Aut}^{(\infty)}(\sigma_6) \not\cong \text{Aut}^{(\infty)}(\sigma_2).$$
Let $\text{Inert}^{(\infty)}(\sigma_n) = \ker \pi_n^{(\infty)}$. So $\text{Inert}^{(\infty)}(\sigma_n) = \bigcup_{k=1}^{\infty} \text{Inert}(\sigma_n^k)$. The previous theorem says that $\text{Inert}^{(\infty)}(\sigma_n)$ is the commutator subgroup of $\text{Aut}^{(\infty)}(\sigma_n)$. We also proved:

Theorem (Hartman-Kra-S.)

For any $n \geq 2$, the group $\text{Inert}^{(\infty)}(\sigma_n) = \bigcup_{k=1}^{\infty} \text{Inert}(\sigma_n^k) = \ker \pi_n^{(\infty)}$ is simple.

Note the group $\text{Aut}^{(\infty)}(\sigma_n)$, and hence also $\text{Inert}^{(\infty)}(\sigma_n)$, is residually finite, and thus very far from simple!
Let $\text{Inert}^{(\infty)}(\sigma_n) = \ker \pi_n^{(\infty)}$. So $\text{Inert}^{(\infty)}(\sigma_n) = \bigcup_{k=1}^{\infty} \text{Inert}(\sigma_n^k)$.

The previous theorem says that $\text{Inert}^{(\infty)}(\sigma_n)$ is the commutator subgroup of $\text{Aut}^{(\infty)}(\sigma_n)$.
Let $\text{Inert}^{(\infty)}(\sigma_n) = \ker \pi_n^{(\infty)}$. So $\text{Inert}^{(\infty)}(\sigma_n) = \bigcup_{k=1}^{\infty} \text{Inert}(\sigma_n^k)$.

The previous theorem says that $\text{Inert}^{(\infty)}(\sigma_n)$ is the commutator subgroup of $\text{Aut}^{(\infty)}(\sigma_n)$.

We also proved:

Theorem (Hartman-Kra-S.)

*For any $n \geq 2$, the group

$$
\text{Inert}^{(\infty)}(\sigma_n) = \bigcup_{k=1}^{\infty} \text{Inert}(\sigma_n^k) = \ker \pi_n^{(\infty)}
$$

is simple.*
Let $\text{Inert}^{(\infty)}(\sigma_n) = \ker \pi_n^{(\infty)}$. So $\text{Inert}^{(\infty)}(\sigma_n) = \bigcup_{k=1}^{\infty} \text{Inert}(\sigma_n^k)$.

The previous theorem says that $\text{Inert}^{(\infty)}(\sigma_n)$ is the commutator subgroup of $\text{Aut}^{(\infty)}(\sigma_n)$.

We also proved:

Theorem (Hartman-Kra-S.)

*For any $n \geq 2$, the group

$$\text{Inert}^{(\infty)}(\sigma_n) = \bigcup_{k=1}^{\infty} \text{Inert}(\sigma_n^k) = \ker \pi_n^{(\infty)}$$

is simple.*

Note the group $\text{Aut}(\sigma_n)$, and hence also $\text{Inert}(\sigma_n)$, is residually finite, and thus very far from simple!
In summary, $\text{Aut}^{(\infty)}(\sigma_2)$ and $\text{Aut}^{(\infty)}(\sigma_6)$ are not isomorphic because they have different abelianizations:

$$\text{Aut}^{(\infty)}(\sigma_2)_{ab} \cong \mathbb{Z}, \quad \text{Aut}^{(\infty)}(\sigma_6)_{ab} \cong \mathbb{Z}^2.$$
In summary, $\text{Aut}^{(\infty)}(\sigma_2)$ and $\text{Aut}^{(\infty)}(\sigma_6)$ are not isomorphic because they have different abelianizations:

\[
\text{Aut}^{(\infty)}(\sigma_2)_{\text{ab}} \cong \mathbb{Z}, \quad \text{Aut}^{(\infty)}(\sigma_6)_{\text{ab}} \cong \mathbb{Z}^2.
\]

But what about $\text{Aut}^{(\infty)}(\sigma_2)$ and $\text{Aut}^{(\infty)}(\sigma_3)$?
In summary, $\text{Aut}^{(\infty)}(\sigma_2)$ and $\text{Aut}^{(\infty)}(\sigma_6)$ are not isomorphic because they have different abelianizations:

$$\text{Aut}^{(\infty)}(\sigma_2)_{ab} \cong \mathbb{Z}, \quad \text{Aut}^{(\infty)}(\sigma_6)_{ab} \cong \mathbb{Z}^2.$$

But what about $\text{Aut}^{(\infty)}(\sigma_2)$ and $\text{Aut}^{(\infty)}(\sigma_3)$? Each of them are extensions of \mathbb{Z} by a simple group:

$$\text{Aut}^{(\infty)}(\sigma_2) \cong \text{Inert}^{(\infty)}(\sigma_2) \rtimes \mathbb{Z}$$

$$\text{Aut}^{(\infty)}(\sigma_3) \cong \text{Inert}^{(\infty)}(\sigma_3) \rtimes \mathbb{Z}.$$
1. Stabilized automorphism groups

2. Local \mathcal{P} entropy

3. Local PS entropy for stabilized groups

4. Distinguishing stabilized automorphism groups of SFT’s
By a *leveled group* \((G, g)\) we mean a group \(G\) together with a distinguished \(g\) of infinite order.
By a *leveled group* \((G, g)\) we mean a group \(G\) together with a distinguished \(g\) of infinite order.

Want to study action \(T_g : G \rightarrow G, \quad T_g : h \mapsto g^{-1}hg\).
By a *leveled group* \((G, g)\) we mean a group \(G\) together with a distinguished \(g\) of infinite order.

Want to study action \(T_g : G \to G, \quad T_g : h \mapsto g^{-1}hg\).

Note: \(\text{Fix}(T^n) = \{h \in G \mid g^{-n}hg^n = h\} = C(g^n) = \text{centralizer of } g^n\).
By a *leveled group* \((G, g)\) we mean a group \(G\) together with a distinguished \(g\) of infinite order.

Want to study action \(T_g : G \rightarrow G\), \(T_g : h \mapsto g^{-1}hg\).

Note: \(\text{Fix}(T^n) = \{ h \in G \mid g^{-n}hg^n = h \} = C(g^n) = \text{centralizer of } g^n\).

Try to study the structure of \(\bigcup_{k=1}^{\infty} C(G^k)\), e.g. growth - but each \(C(g^n)\) may be infinite.
By a *leveled group* \((G, g)\) we mean a group \(G\) together with a distinguished \(g\) of infinite order.

Want to study action \(T_g : G \rightarrow G, \quad T_g : h \mapsto g^{-1}hg\).

Note: \(\text{Fix}(T^n) = \{h \in G \mid g^{-n}hg^n = h\} = C(g^n) = \text{centralizer of } g^n\).

Try to study the structure of \(\bigcup_{k=1}^{\infty} C(G^k)\), e.g. growth - but each \(C(g^n)\) may be infinite.

Rough idea:

- choose a class \(\mathcal{P}\) of finite groups which is closed under isomorphism, e.g. finite abelian groups.
By a *leveled group* \((G, g)\) we mean a group \(G\) together with a distinguished \(g\) of infinite order.

Want to study action \(T_g : G \to G, \quad T_g : h \mapsto g^{-1} hg\).

Note: \(\text{Fix}(T^n) = \{h \in G \mid g^{-n}hg^n = h\} = C(g^n) = \text{centralizer of } g^n\).

Try to study the structure of \(\bigcup_{k=1}^{\infty} C(G^k)\), e.g. growth - but each \(C(g^n)\) may be infinite.

Rough idea:

- choose a class \(\mathcal{P}\) of finite groups which is closed under isomorphism, e.g. finite abelian groups.
- try to approximate \(C(G^n)\)'s with finite \(\mathcal{P}\) groups, compute some growth.
Fix a leveled group \((G, g)\), and some class \(\mathcal{P}\) of finite groups, closed under isomorphism.
Local \mathcal{P} entropy

Fix a leveled group (G, g), and some class \mathcal{P} of finite groups, closed under isomorphism.

A subgroup $H \subset G$ is g-locally \mathcal{P} if it satisfies:

1. For all n sufficiently large, $H \cap C(g^n) \in \mathcal{P}$.
2. $H \cap C(g) \neq \{e\}$.

Define the local \mathcal{P} entropy of (G, g) by

\[h_{\mathcal{P}}(G, g) = \sup_{H \in \mathcal{F}_\mathcal{P}} \limsup_{n \to \infty} \frac{1}{n} \log \log |H \cap C(g^n)| \]

where $\mathcal{F}_\mathcal{P}$ is the set of g-locally \mathcal{P} subgroups of G.

Note: depending on G, g and \mathcal{P}, sometimes want to use

\[h_{\mathcal{P}}(G, g) = \sup_{H \in \mathcal{F}_\mathcal{P}} \limsup_{n \to \infty} \frac{1}{n} \log |H \cap C(g^n)|. \]
Fix a leveled group (G, g), and some class \mathcal{P} of finite groups, closed under isomorphism.

A subgroup $H \subset G$ is g-locally \mathcal{P} if it satisfies:

1. For all n sufficiently large, $H \cap C(g^n) \in \mathcal{P}$.
2. $H \cap C(g) \neq \{e\}$.

Define the local \mathcal{P} entropy of (G, g) by

$$h_{l\mathcal{P}}(G, g) = \sup_{H \in \mathcal{F}_{\mathcal{P}}} \limsup_{n \to \infty} \frac{1}{n} \log \log |H \cap C(g^n)|$$

where $\mathcal{F}_{\mathcal{P}} = \text{set of } g\text{-locally } \mathcal{P} \text{ subgroups of } G$.
Fix a leveled group \((G, g)\), and some class \(\mathcal{P}\) of finite groups, closed under isomorphism.

A subgroup \(H \subset G\) is \(g\)-locally \(\mathcal{P}\) if it satisfies:

1. For all \(n\) sufficiently large, \(H \cap C(g^n) \in \mathcal{P}\).
2. \(H \cap C(g) \neq \{e\}\).

Define the local \(\mathcal{P}\) entropy of \((G, g)\) by

\[
\operatorname{h}_\mathcal{P}(G, g) = \sup_{H \in \mathcal{F}_\mathcal{P}} \limsup_{n \to \infty} \frac{1}{n} \log \log |H \cap C(g^n)|
\]

where \(\mathcal{F}_\mathcal{P} = \) set of \(g\)-locally \(\mathcal{P}\) subgroups of \(G\).

Note: depending on \(G, g\) and \(\mathcal{P}\), sometimes want to use

\[
\operatorname{H}_\mathcal{P}(G, g) = \sup_{H \in \mathcal{F}_\mathcal{P}} \limsup_{n \to \infty} \frac{1}{n} \log |H \cap C(g^n)|.
\]

Local \(\mathcal{P}\) entropy
Some properties

The choice of \mathcal{P} provides some flexibility; a downside is that, depending on G, g and \mathcal{P}, the quantity $h_{\mathcal{P}(G,g)}$ may not exist.

1. If $\iota: \langle H, h \rangle \to \langle G, g \rangle$ is a leveled monomorphism, then $h_{\mathcal{P}(H,h)} \leq h_{\mathcal{P}(G,g)}$.

2. If $\Psi: \langle H, h \rangle \to \langle G, g \rangle$ is a leveled isomorphism, then $h_{\mathcal{P}(H,h)} = h_{\mathcal{P}(G,g)}$.

3. For any $k \geq 1$, $h_{\mathcal{P}(G,g)} \leq k \cdot h_{\mathcal{P}(G,g)}$.

4. $h_{\mathcal{P}(G,g)} = h_{\mathcal{P}(G,g^{-1})}$ (a leveled map $\phi: \langle G, g \rangle \to \langle H, h \rangle$ is a group homomorphism $\phi: G \to H$ with $\phi(g) = h$).

Item 2 is particularly important for our applications - it means we can use $h_{\mathcal{P}}$ as an invariant of leveled isomorphism.
The choice of \mathcal{P} provides some flexibility; a downside is that, depending on G, g and \mathcal{P}, the quantity $h_{\mathcal{P}(G,g)}$ may not exist.

When $h_{\mathcal{P}}(G, g)$ does exist, it satisfies some nice properties:
Some properties

The choice of \mathcal{P} provides some flexibility; a downside is that, depending on G, g and \mathcal{P}, the quantity $h_{l\mathcal{P}}(G, g)$ may not exist.

When $h_{l\mathcal{P}}(G, g)$ does exist, it satisfies some nice properties:

1. If $i: (H, h) \rightarrow (G, g)$ is a leveled monomorphism, then

 \[h_{l\mathcal{P}}(H, h) \leq h_\mathcal{P}(G, g). \]
Some properties

The choice of \mathcal{P} provides some flexibility; a downside is that, depending on G, g and \mathcal{P}, the quantity $h_{l\mathcal{P}(G,g)}$ may not exist.

When $h_{l\mathcal{P}(G,g)}$ does exist, it satisfies some nice properties:

1. If $i : (H, h) \to (G, g)$ is a leveled monomorphism, then

 $$h_{l\mathcal{P}}(H, h) \leq h_{\mathcal{P}}(G, g).$$

2. If $\Psi : (H, h) \to (G, g)$ is a leveled isomorphism, then

 $$h_{l\mathcal{P}}(H, g) = h_{\mathcal{P}}(G, g).$$

Item 2 is particularly important for our applications - it means we can use $h_{l\mathcal{P}}$ as an invariant of leveled isomorphism.
Some properties

The choice of \mathcal{P} provides some flexibility; a downside is that, depending on G, g and \mathcal{P}, the quantity $h_{l\mathcal{P}(G,g)}$ may not exist.

When $h_{l\mathcal{P}}(G, g)$ does exist, it satisfies some nice properties:

1. If $i: (H, h) \rightarrow (G, g)$ is a leveled monomorphism, then
 \[h_{l\mathcal{P}}(H, h) \leq h_{\mathcal{P}}(G, g). \]

2. If $\Psi: (H, h) \rightarrow (G, g)$ is a leveled isomorphism, then
 \[h_{l\mathcal{P}}(H, g) = h_{\mathcal{P}}(G, g). \]

3. For any $k \geq 1$,
 \[h_{l\mathcal{P}}(G, g^k) \leq k \cdot h_{l\mathcal{P}}(G, g). \]
Some properties

The choice of \mathcal{P} provides some flexibility; a downside is that, depending on G, g and \mathcal{P}, the quantity $h_{l\mathcal{P}(G,g)}$ may not exist.

When $h_{l\mathcal{P}}(G, g)$ does exist, it satisfies some nice properties:

1. If $i: (H, h) \rightarrow (G, g)$ is a leveled monomorphism, then
 \[h_{l\mathcal{P}}(H, h) \leq h_{\mathcal{P}}(G, g). \]

2. If $\Psi: (H, h) \rightarrow (G, g)$ is a leveled isomorphism, then
 \[h_{l\mathcal{P}}(H, g) = h_{\mathcal{P}}(G, g). \]

3. For any $k \geq 1$,
 \[h_{l\mathcal{P}}(G, g^k) \leq k \cdot h_{l\mathcal{P}}(G, g). \]

4. $h_{l\mathcal{P}}(G, g) = h_{l\mathcal{P}}(G, g^{-1})$
Some properties

The choice of \mathcal{P} provides some flexibility; a downside is that, depending on G, g and \mathcal{P}, the quantity $h_{\mathcal{P}}(G, g)$ may not exist.

When $h_{\mathcal{P}}(G, g)$ does exist, it satisfies some nice properties:

1. If $i: (H, h) \to (G, g)$ is a leveled monomorphism, then
 \[h_{\mathcal{P}}(H, h) \leq h_{\mathcal{P}}(G, g). \]

2. If $\Psi: (H, h) \to (G, g)$ is a leveled isomorphism, then
 \[h_{\mathcal{P}}(H, g) = h_{\mathcal{P}}(G, g). \]

3. For any $k \geq 1$,
 \[h_{\mathcal{P}}(G, g^k) \leq k \cdot h_{\mathcal{P}}(G, g). \]

4. $h_{\mathcal{P}}(G, g) = h_{\mathcal{P}}(G, g^{-1})$

(a leveled map $\phi: (G, g) \to (H, h)$ is a group homomorphism $\phi: G \to H$ with $\phi(g) = h$.)

Some properties

The choice of \mathcal{P} provides some flexibility; a downside is that, depending on G, g and \mathcal{P}, the quantity $h_{l\mathcal{P}}(G, g)$ may not exist.

When $h_{l\mathcal{P}}(G, g)$ does exist, it satisfies some nice properties:

1. If $i: (H, h) \rightarrow (G, g)$ is a leveled monomorphism, then
 \[h_{l\mathcal{P}}(H, h) \leq h_{\mathcal{P}}(G, g). \]

2. If $\Psi: (H, h) \rightarrow (G, g)$ is a leveled isomorphism, then
 \[h_{l\mathcal{P}}(H, g) = h_{\mathcal{P}}(G, g). \]

3. For any $k \geq 1$,
 \[h_{l\mathcal{P}}(G, g^k) \leq k \cdot h_{l\mathcal{P}}(G, g). \]

4. $h_{l\mathcal{P}}(G, g) = h_{l\mathcal{P}}(G, g^{-1})$

(a leveled map $\phi: (G, g) \rightarrow (H, h)$ is a group homomorphism $\phi: G \rightarrow H$ with $\phi(g) = h$.)

Item 2 is particularly important for our applications - it means we can use $h_{l\mathcal{P}}$ as an invariant of leveled isomorphism.
As an example, let \(p_k \) be the set of primes, \(Q \) be a partition of \(\mathbb{N} \) into sets of size \(p_k \), one set per prime.
As an example, let p_k be the set of primes, Q be a partition of \mathbb{N} into sets of size p_k, one set per prime.
As an example, let p_k be the set of primes, Q be a partition of \mathbb{N} into sets of size p_k, one set per prime.

Let $\tau \in \text{Sym}(\mathbb{N})$ act by a p_k cycle on the set in Q of size p_k.

...
As an example, let p_k be the set of primes, Q be a partition of \mathbb{N} into sets of size p_k, one set per prime.

Let $\tau \in \text{Sym}(\mathbb{N})$ act by a p_k cycle on the set in Q of size p_k.

Let H be the group of finitely-supported permutations of \mathbb{N} respecting Q, and G be the group generated by τ and H in $\text{Sym}(\mathbb{N})$.
As an example, let p_k be the set of primes, Q be a partition of \mathbb{N} into sets of size p_k, one set per prime.

Let $\tau \in \text{Sym}(\mathbb{N})$ act by a p_k cycle on the set in Q of size p_k.

Let H be the group of finitely-supported permutations of \mathbb{N} respecting Q, and G be the group generated by τ and H in $\text{Sym}(\mathbb{N})$.

For any prime q, if \mathcal{P}_q is the class of finite abelian q-groups, then

$$H_{l\mathcal{P}_q}(G, \tau) = \frac{1}{q} \log q.$$
We can use local P entropy to study stabilized automorphism groups.
We can use local \mathcal{P} entropy to study stabilized automorphism groups.

For this, we use the class of finite groups which are products of simple non-abelian groups (also satisfying some technical condition, we omit):

$$PS_r = \{ G \mid G \cong \prod_{i=1}^{r} G_i \text{ for some finite simple non-abelian groups } G_i \}.$$
We can use local \mathcal{P} entropy to study stabilized automorphism groups.

For this, we use the class of finite groups which are products of simple non-abelian groups (also satisfying some technical condition, we omit):

$$PS_r = \{ G \mid G \cong \prod_{i=1}^{r} G_i \text{ for some finite simple non-abelian groups } G_i \}.$$

So PS_1 is just the class of finite simple non-abelian groups. That PS_r is closed under isomorphism follows from the Krull-Remak-Schmidt Theorem.
Local PS entropy

We can use local P entropy to study stabilized automorphism groups.

For this, we use the class of finite groups which are products of simple non-abelian groups (also satisfying some technical condition, we omit):

$$PS_r = \{ G \mid G \cong \prod_{i=1}^{r} G_i \text{ for some finite simple non-abelian groups } G_i \}.$$

So PS_1 is just the class of finite simple non-abelian groups. That PS_r is closed under isomorphism follows from the Krull-Remak-Schmidt Theorem.

One of our main results is the following:
Local \mathcal{P} entropy

We can use local \mathcal{P} entropy to study stabilized automorphism groups.

For this, we use the class of finite groups which are products of simple non-abelian groups (also satisfying some technical condition, we omit):

$$PS_r = \{ G \mid G \cong \prod_{i=1}^{r} G_i \text{ for some finite simple non-abelian groups } G_i \}.$$

So PS_1 is just the class of finite simple non-abelian groups. That PS_r is closed under isomorphism follows from the Krull-Remak-Schmidt Theorem.

One of our main results is the following:

Theorem (S.)

Let (X, T) be an expansive system such that for any $a_j \to \infty$, the set of periodic points $\bigcup_{j=1}^{\infty} P_{a_j}(T)$ is dense in X. Then for any $k \geq 1$, $r \geq 1$, if the local PS_r entropy of $(\text{Aut}^{(\infty)}(T), T^k)$ exists, then

$$h_{lPS_r} \left(\text{Aut}^{(\infty)}(T), T^k \right) \leq h_{top}(T^k).$$
Our primary application is in the setting of shifts of finite type, to which the previous theorem applies. In this case, we can say much more:

\[h_{lPS}^r(\text{Aut}(\sigma), \sigma^k) = h_{\text{top}}(\sigma^k). \]
Our primary application is in the setting of shifts of finite type, to which the previous theorem applies. In this case, we can say much more:

Theorem (S.)

Let (X, σ) be a non-trivial mixing shift of finite type, and $k \geq 1$. There exists $r \geq 1$ such that

$$h_{lPS_r} \left(\text{Aut}^{(\infty)}(\sigma), \sigma^k \right) = h_{top}(\sigma^k).$$
Our primary application is in the setting of shifts of finite type, to which the previous theorem applies. In this case, we can say much more:

Theorem (S.)

Let \((X, \sigma)\) be a non-trivial mixing shift of finite type, and \(k \geq 1\). There exists \(r \geq 1\) such that

\[
h_{\text{IPS}_r} \left(\text{Aut}^{(\infty)}(\sigma), \sigma^k \right) = h_{\text{top}}(\sigma^k).
\]

- For \((X, \sigma)\), can use \(r = \#\) vertices in a presenting graph for \((X, \sigma)\).
Our primary application is in the setting of shifts of finite type, to which the previous theorem applies. In this case, we can say much more:

Theorem (S.)

Let \((X, \sigma)\) be a non-trivial mixing shift of finite type, and \(k \geq 1\). There exists \(r \geq 1\) such that

\[
h_{lPS_r} \left(\text{Aut}^{(\infty)}(\sigma), \sigma^k \right) = h_{\text{top}}(\sigma^k).
\]

- For \((X, \sigma)\), can use \(r = \#\) vertices in a presenting graph for \((X, \sigma)\).

- For full shifts, can actually just use the class \(\mathcal{P}\) of all finite simple groups.
1. Stabilized automorphism groups

2. Local P entropy

3. Local PS entropy for stabilized groups

4. Distinguishing stabilized automorphism groups of SFT’s
A priori, local PS_r entropy is only an invariant of a leveled group (G, g).
A priori, local PS_r entropy is only an invariant of a leveled group (G, g).

To use it to distinguish stabilized groups of SFT’s, the final ingredient is the following:
A priori, local PS_r entropy is only an invariant of a leveled group (G, g).

To use it to distinguish stabilized groups of SFT’s, the final ingredient is the following:

Theorem (S.)

Let (X, σ_X) and (Y, σ_Y) be non-trivial mixing shifts of finite type, and suppose there is an isomorphism of groups

$$\Psi : \text{Aut}^{(\infty)}(\sigma_X) \rightarrow \text{Aut}^{(\infty)}(\sigma_Y).$$

Then for some $k, j \neq 0$, Ψ is also an isomorphism of leveled groups

$$\Psi : \left(\text{Aut}^{(\infty)}(\sigma_X), \sigma_X^k \right) \rightarrow \left(\text{Aut}^{(\infty)}(\sigma_Y), \sigma_Y^j \right).$$
A priori, local PS_r entropy is only an invariant of a leveled group (G, g).

To use it to distinguish stabilized groups of SFT’s, the final ingredient is the following:

Theorem (S.)

Let (X, σ_X) and (Y, σ_Y) be non-trivial mixing shifts of finite type, and suppose there is an isomorphism of groups

$$\Psi : \text{Aut}^{(\infty)}(\sigma_X) \rightarrow \text{Aut}^{(\infty)}(\sigma_Y).$$

Then for some $k, j \neq 0$, Ψ is also an isomorphism of leveled groups

$$\Psi : \left(\text{Aut}^{(\infty)}(\sigma_X), \sigma_X^k \right) \rightarrow \left(\text{Aut}^{(\infty)}(\sigma_Y), \sigma_Y^j \right).$$

To prove the above, we introduce something called ‘ghost centers’ of a group. While the center of $\text{Aut}^{(\infty)}(\sigma_X)$ is trivial, ghost centers of $\text{Aut}^{(\infty)}(\sigma_X)$ always exist.
Combining the previous results gives us the following:
Combining the previous results gives us the following:

Theorem (S.)

Let \((X, \sigma_X)\) and \((Y, \sigma_Y)\) be non-trivial mixing shifts of finite type, and suppose there is an isomorphism

\[
\Psi : \text{Aut}^{(\infty)}(\sigma_X) \to \text{Aut}^{(\infty)}(\sigma_Y).
\]

Then

\[
\frac{h_{\text{top}}(\sigma_X)}{h_{\text{top}}(\sigma_Y)} \in \mathbb{Q}.
\]
Combining the previous results gives us the following:

Theorem (S.)

Let \((X, \sigma_X)\) and \((Y, \sigma_Y)\) be non-trivial mixing shifts of finite type, and suppose there is an isomorphism
\[
\Psi : \text{Aut}^{(\infty)}(\sigma_X) \rightarrow \text{Aut}^{(\infty)}(\sigma_Y).
\]

Then
\[
\frac{h_{\text{top}}(\sigma_X)}{h_{\text{top}}(\sigma_Y)} \in \mathbb{Q}.
\]

- Note: if \((X, \sigma_X), (Y, \sigma_Y)\) are presented as edge SFT’s with primitive adjacency matrices \(A, B\), then this says
\[
\frac{\log \lambda_A}{\log \lambda_B} \in \mathbb{Q}
\]

where \(\lambda_A, \lambda_B\) are the PF-eigenvalues of \(A, B\).
This allows us to give a complete classification of the stabilized automorphism groups of full shifts:

Theorem (S.)

Given natural numbers $m, n \geq 2$, the stabilized groups $\text{Aut}(\sigma^m)$ and $\text{Aut}(\sigma^n)$ are isomorphic if and only if $m^k = n^j$ for some $k, j \in \mathbb{N}$.

And in particular:

Theorem (S.)
The stabilized automorphism groups of the full 2-shift and full 3-shift are not isomorphic.
This allows us to give a complete classification of the stabilized automorphism groups of full shifts:

Theorem (S.)

Given natural numbers $m, n \geq 2$, the stabilized groups $\text{Aut}^\infty(\sigma_m)$ and $\text{Aut}^\infty(\sigma_n)$ are isomorphic if and only if $m^k = n^j$ for some $k, j \in \mathbb{N}$.
This allows us to give a complete classification of the stabilized automorphism groups of full shifts:

Theorem (S.)

Given natural numbers $m, n \geq 2$, the stabilized groups $\text{Aut}^{(\infty)}(\sigma_m)$ and $\text{Aut}^{(\infty)}(\sigma_n)$ are isomorphic if and only if $m^k = n^j$ for some $k, j \in \mathbb{N}$.

And in particular:
This allows us to give a complete classification of the stabilized automorphism groups of full shifts:

Theorem (S.)

*Given natural numbers $m, n \geq 2$, the stabilized groups $\text{Aut}^{(\infty)}(\sigma_m)$ and $\text{Aut}^{(\infty)}(\sigma_n)$ are isomorphic if and only if $m^k = n^j$ for some $k, j \in \mathbb{N}$.**

And in particular:

Theorem (S.)

The stabilized automorphism groups of the full 2-shift and full 3-shift are not isomorphic.
As a last comment:
As a last comment:

Interestingly, while we now know that $\text{Aut}^{(\infty)}(\sigma_2)$ and $\text{Aut}^{(\infty)}(\sigma_3)$ are not isomorphic, we still do not know whether $\text{Inert}^{(\infty)}(\sigma_2)$ and $\text{Inert}^{(\infty)}(\sigma_3)$ are isomorphic!
As a last comment:

Interestingly, while we now know that $\text{Aut}^{(\infty)}(\sigma_2)$ and $\text{Aut}^{(\infty)}(\sigma_3)$ are not isomorphic, we still do not know whether $\text{Inert}^{(\infty)}(\sigma_2)$ and $\text{Inert}^{(\infty)}(\sigma_3)$ are isomorphic!

maybe they are....
As a last comment:

Interestingly, while we now know that $\text{Aut}^{(\infty)}(\sigma_2)$ and $\text{Aut}^{(\infty)}(\sigma_3)$ are not isomorphic, we still do not know whether $\text{Inert}^{(\infty)}(\sigma_2)$ and $\text{Inert}^{(\infty)}(\sigma_3)$ are isomorphic!

maybe they are....

(probably they are not)
Thank you
A little more detail regarding the classes PS_r, and obtaining the lower bound for h_{lPS_r} of $\text{Aut}^{(\infty)}(\sigma_X)$ when (X, σ_X) is a non-trivial mixing shift of finite type:
A little more detail regarding the classes PS_r, and obtaining the lower bound for h_{lPS_r} of $\text{Aut}^{(\infty)}(\sigma_X)$ when (X, σ_X) is a non-trivial mixing shift of finite type:

We really use the following classes:
The class $PS_{C,D,r}$

A little more detail regarding the classes PS_r, and obtaining the lower bound for h_{lPS_r} of $\text{Aut}^{(\infty)}(\sigma_X)$ when (X, σ_X) is a non-trivial mixing shift of finite type:

We really use the following classes:

Given positive real numbers $C \leq 1 \leq D$ and $r \in \mathbb{N}$: say a finite group G belongs to the class $PS_{C,D,r}$ if G satisfies all of the following:

1. $G = \prod_{i=1}^{r} G_i$ where each G_i is finite, simple, and non-abelian.
2. For all $1 \leq i, j \leq r$, $|G_i|^C \leq |G_j| \leq |G_i|^D$.
The class $PS_{C,D,r}$

A little more detail regarding the classes PS_r, and obtaining the lower bound for h_{lPS_r} of $\text{Aut}^{(\infty)}(\sigma_X)$ when (X, σ_X) is a non-trivial mixing shift of finite type:

We really use the following classes:

Given positive real numbers $C \leq 1 \leq D$ and $r \in \mathbb{N}$: say a finite group G belongs to the class $PS_{C,D,r}$ if G satisfies all of the following:

1. $G = \prod_{i=1}^{r} G_i$ where each G_i is finite, simple, and non-abelian.
2. For all $1 \leq i, j \leq r$, $|G_i|^C \leq |G_j| \leq |G_i|^D$.

Now to show $h_{lPS_{C,D,r}} \left(\text{Aut}^{(\infty)}(\sigma_X), \sigma_X^k \right) \geq h_{top}(\sigma_X^k)$, it suffices to produce a σ_X^k-locally $PS_{C,D,r}$ subgroup with the right growth rate.
The class $PS_{C,D,r}$

A little more detail regarding the classes PS_r, and obtaining the lower bound for h_{lPS_r} of $\text{Aut}^{(\infty)}(\sigma_X)$ when (X, σ_X) is a non-trivial mixing shift of finite type:

We really use the following classes:

Given positive real numbers $C \leq 1 \leq D$ and $r \in \mathbb{N}$: say a finite group G belongs to the class $PS_{C,D,r}$ if G satisfies all of the following:

1. $G = \prod_{i=1}^{r} G_i$ where each G_i is finite, simple, and non-abelian.
2. For all $1 \leq i, j \leq r$, $|G_i|^C \leq |G_j| \leq |G_i|^D$.

Now to show $h_{lPS_{C,D,r}} \left(\text{Aut}^{(\infty)}(\sigma_X), \sigma_X^k \right) \geq h_{\text{top}}(\sigma_X^k)$, it suffices to produce a σ_X^k-locally $PS_{C,D,r}$ subgroup with the right growth rate.

For simplicity, we’ll outline this for full shifts and $k = 1$, for which we can use $C = D = r = 1$, and $PS_{1,1,1}$ is just the class of finite simple non-abelian groups.
Let Γ_n be a graph with one vertex, n labeled edges.

So (X_n, σ_n) is the edge SFT coming from Γ_n.

\[
\begin{array}{c}
\text{\includegraphics[width=0.3\textwidth]{graph.png}}
\end{array}
\]
Let Γ_n be a graph with one vertex, n labeled edges.

So (X_n, σ_n) is the edge SFT coming from Γ_n.

For each $k \geq 1$, Γ_n^k presents (X_n, σ_n^k).
Let Γ_n be a graph with one vertex, n labeled edges.

So (X_n, σ_n) is the edge SFT coming from Γ_n.

For each $k \geq 1$, Γ_n^k presents (X_n, σ_n^k).

We may consider (X_n, σ_n^k) as the full shift on vectors of length k

$$
\begin{pmatrix}
 a_0 \\
 \vdots \\
 a_{k-1}
\end{pmatrix}, \quad a_i \in \{0, \ldots, n-1\}.
$$
Let Γ_n be a graph with one vertex, n labeled edges.

So (X_n, σ_n) is the edge SFT coming from Γ_n.

For each $k \geq 1$, Γ_n^k presents (X_n, σ_n^k).

We may consider (X_n, σ_n^k) as the full shift on vectors of length k

$$
\begin{pmatrix}
 a_0 \\
 \vdots \\
 a_{k-1}
\end{pmatrix}, \quad a_i \in \{0, \ldots, n - 1\}.
$$

So a point in (X_n, σ_n^k) looks like

$$
\cdots \begin{pmatrix} a_{-k} \end{pmatrix} \begin{pmatrix} a_0 \end{pmatrix} \begin{pmatrix} a_k \end{pmatrix} \cdots
\begin{pmatrix} a_{-1} \end{pmatrix} \begin{pmatrix} a_{k-1} \end{pmatrix} \begin{pmatrix} a_{2k-1} \end{pmatrix} \cdots
$$
Let $E(\Gamma_n) = \text{labeled edge set of } \Gamma_n$.
Let $E(\Gamma_n) = \text{labeled edge set of } \Gamma_n$.

\[
\gamma \in \text{Sym}(E(\Gamma_n)) \mapsto \tilde{\gamma} \in \text{Aut}(\sigma_n)
\]

$\tilde{\gamma}$ given by 0-block code.

Likewise, $\gamma \in \text{Sym}(E(\Gamma_n^k)) \mapsto \tilde{\gamma} \in \text{Aut}(\sigma_n^k)$.

Define $\text{Simp}(k)(\sigma_n) = \{ \tilde{\gamma} | \gamma \in \text{Sym}(E(\Gamma_n^k)) \}$.

So $\text{Simp}(k)(\sigma_n) \subset \text{Aut}(\sigma_n^k)$.

Note for every k, $\text{Simp}(k)(\sigma_n)$ is a finite group.
Let $E(\Gamma_n) =$ labeled edge set of Γ_n.

$$\gamma \in \text{Sym}(E(\Gamma_n)) \iff \tilde{\gamma} \in \text{Aut}(\sigma_n)$$

$\tilde{\gamma}$ given by 0-block code.

Such a $\tilde{\gamma}$ is called an elementary simple automorphism (of (X_n, σ_n)).
Let $E(\Gamma_n) =$ labeled edge set of Γ_n.

$$\gamma \in \text{Sym}(E(\Gamma_n)) \leadsto \tilde{\gamma} \in \text{Aut}(\sigma_n)$$

$\tilde{\gamma}$ given by 0-block code.

Such a $\tilde{\gamma}$ is called an elementary simple automorphism (of (X_n, σ_n)).

Likewise,

$$\gamma \in \text{Sym}(E(\Gamma_{nk})) \leadsto \tilde{\gamma} \in \text{Aut}(\sigma_{nk}^k).$$
Let $E(\Gamma_n) =$ labeled edge set of Γ_n.

$$\gamma \in \text{Sym}(E(\Gamma_n)) \leadsto \tilde{\gamma} \in \text{Aut}(\sigma_n)$$

$\tilde{\gamma}$ given by 0-block code.

Such a $\tilde{\gamma}$ is called an elementary simple automorphism (of (X_n, σ_n)).

Likewise,

$$\gamma \in \text{Sym}(E(\Gamma_n^k)) \leadsto \tilde{\gamma} \in \text{Aut}(\sigma_n^k).$$

Define

$$\text{Simp}^{(k)}(\sigma_n) = \{\tilde{\gamma} \mid \gamma \in \text{Sym}(E(\Gamma_n^k))\}.$$

so

$$\text{Simp}^{(k)}(\sigma_n) \subset \text{Aut}(\sigma_n^k).$$
Stabilized simple automorphisms

Let $E(\Gamma_n) = \text{labeled edge set of } \Gamma_n$.

$$\gamma \in \text{Sym}(E(\Gamma_n)) \rightsquigarrow \tilde{\gamma} \in \text{Aut}(\sigma_n)$$

$\tilde{\gamma}$ given by 0-block code.

Such a $\tilde{\gamma}$ is called an elementary simple automorphism (of (X_n, σ_n)).

Likewise,

$$\gamma \in \text{Sym}(E(\Gamma_{nk})) \rightsquigarrow \tilde{\gamma} \in \text{Aut}(\sigma^k_n).$$

Define

$$\text{Simp}^{(k)}(\sigma_n) = \{\tilde{\gamma} \mid \gamma \in \text{Sym}(E(\Gamma_{nk}))\}.$$

so

$$\text{Simp}^{(k)}(\sigma_n) \subset \text{Aut}(\sigma^k_n).$$

Note for every k, $\text{Simp}^{(k)}(\sigma_n)$ is a finite group.
Given k, define:

$$\text{Alt}^{(k)}(\sigma_n) = \{ \tilde{\gamma} \mid \gamma \in \text{Alt}(E(\Gamma_n^k)) \}.$$
Given k, define:

$$\text{Alt}^{(k)}(\sigma_n) = \{ \tilde{\gamma} \mid \gamma \in \text{Alt}(E(\Gamma_n^k)) \}.$$

There are inclusions

$$\text{Simp}^{(k)}(\sigma_n) \hookrightarrow \text{Simp}^{(kj)}(\sigma_n)$$
$$\text{Alt}^{(k)}(\sigma_n) \hookrightarrow \text{Alt}^{(kj)}(\sigma_n)$$
Given \(k \), define:
\[
\text{Alt}^{(k)}(\sigma_n) = \{ \tilde{\gamma} \mid \gamma \in \text{Alt}(E(\Gamma_{nk})) \}.
\]

There are inclusions
\[
\text{Simp}^{(k)}(\sigma_n) \hookrightarrow \text{Simp}^{(kj)}(\sigma_n)
\]
\[
\text{Alt}^{(k)}(\sigma_n) \hookrightarrow \text{Alt}^{(kj)}(\sigma_n)
\]

For example: \(\tau : 0 \leftrightarrow 1 \)

\[
\tilde{\tau} \in \text{Simp}^{(1)}(\sigma_2) \quad \sim \quad \tilde{\tau} = \begin{pmatrix} \tau \\ \tau \end{pmatrix} \in \text{Simp}^{(3)}(\sigma_2)
\]
Once $n^k \geq 5$, $\text{Alt}^{(k)}(\sigma_n)$ is non-abelian and simple.
Once \(n^k \geq 5 \), \(\text{Alt}^{(k)}(\sigma_n) \) is non-abelian and simple.

Define

\[
\text{Alt}^{(\infty)}(\sigma_n) = \bigcup_{k=1}^{(\infty)} \text{Alt}^{(k)}(\sigma_n) \subset \text{Aut}^{(\infty)}(\sigma_n)
\]
Once $n^k \geq 5$, $\text{Alt}^{(k)}(\sigma_n)$ is non-abelian and simple.

Define

$$\text{Alt}^{(\infty)}(\sigma_n) = \bigcup_{k=1}^{(\infty)} \text{Alt}^{(k)}(\sigma_n) \subset \text{Aut}^{(\infty)}(\sigma_n)$$

Then $\text{Alt}^{(\infty)}(\sigma_n) \cap C^{\infty}(\sigma_n^k) = \text{Alt}^{(k)}(\sigma_n)$, so $\text{Alt}^{(\infty)}(\sigma_n)$ is a σ_n-locally $PS_{1,1,1}$ subgroup of $\text{Aut}^{(\infty)}(\sigma_n)$.

It suffices then to compute $\limsup_{k \to \infty} \frac{1}{k} \log \log 2^n = \log n$, using e.g. Stirling's.
Once $n^k \geq 5$, $\text{Alt}^{(k)}(\sigma_n)$ is non-abelian and simple.

Define
\[
\text{Alt}^{(\infty)}(\sigma_n) = \bigcup_{k=1}^{(\infty)} \text{Alt}^{(k)}(\sigma_n) \subset \text{Aut}^{(\infty)}(\sigma_n)
\]

Then $\text{Alt}^{(\infty)}(\sigma_n) \cap C(\sigma^n_k) = \text{Alt}^{(k)}(\sigma_n)$, so $\text{Alt}^{(\infty)}(\sigma_n)$ is a σ_n-locally $PS_{1,1,1}$ subgroup of $\text{Aut}^{(\infty)}(\sigma_n)$.

It suffices then to compute $\limsup_{k \to \infty} \frac{1}{k} \log \log \frac{1}{2} n^k! = \log(n)$, using e.g. Stirling’s.
To prove that isomorphism of stabilized automorphism groups of mixing SFT’s upgrades to leveled isomorphism, we use the concept of *ghost centers*:

- A subgroup $H \subset \text{Aut}(\sigma^n)$ is a ghost center if for every finitely generated subgroup K, $K \cap H \neq \{e\}$.
- Say a ghost center H is:
 - Maximal if it is not properly contained in any other ghost center.
 - Cyclic if H is a cyclic group.

Maximal cyclic ghost centers are mapped to maximal cyclic ghost centers under an isomorphism. Now one shows that:

$H \subset \text{Aut}(\sigma^n)$ is a maximal cyclic ghost center if and only if $H = \langle \gamma \rangle$ where γ is a root of a power of σ^n.

To prove that isomorphism of stabilized automorphism groups of mixing SFT’s upgrades to leveled isomorphism, we use the concept of ghost centers:

- A subgroup $H \subset \text{Aut}^{(\infty)}(\sigma_n)$ is a ghost center if for every finitely generated subgroup K, $K \cap H \neq \{e\}$.

Maximal cyclic ghost centers are mapped to maximal cyclic ghost centers under an isomorphism.
To prove that isomorphism of stabilized automorphism groups of mixing SFT’s upgrades to leveled isomorphism, we use the concept of *ghost centers*:

- A subgroup $H \subset \text{Aut}^{(\infty)}(\sigma_n)$ is a ghost center if for every finitely generated subgroup $K, K \cap H \neq \{e\}$.

Say a ghost center H is:

- Maximal if it is not properly contained in any other ghost center.
- Cyclic if H is a cyclic group.

Maximal cyclic ghost centers are mapped to maximal cyclic ghost centers under an isomorphism.
To prove that isomorphism of stabilized automorphism groups of mixing SFT’s upgrades to leveled isomorphism, we use the concept of ghost centers:

- A subgroup $H \subset \text{Aut}^{(\infty)}(\sigma_n)$ is a ghost center if for every finitely generated subgroup K, $K \cap H \neq \{e\}$.

Say a ghost center H is:

- Maximal if it is not properly contained in any other ghost center.

- Cyclic if H is a cyclic group. Maximal cyclic ghost centers are mapped to maximal cyclic ghost centers under an isomorphism.
To prove that isomorphism of stabilized automorphism groups of mixing SFT’s upgrades to leveled isomorphism, we use the concept of *ghost centers*:

- A subgroup $H \subset \text{Aut}^{(\infty)}(\sigma_n)$ is a ghost center if for every finitely generated subgroup K, $K \cap H \neq \{e\}$.

Say a ghost center H is:

- Maximal if it is not properly contained in any other ghost center.
- Cyclic if H is a cyclic group.
To prove that isomorphism of stabilized automorphism groups of mixing SFT’s upgrades to leveled isomorphism, we use the concept of *ghost centers*:

- A subgroup $H \subset \text{Aut}^{(\infty)}(\sigma_n)$ is a ghost center if for every finitely generated subgroup K, $K \cap H \neq \{e\}$.

Say a ghost center H is:

- Maximal if it is not properly contained in any other ghost center.
- Cyclic if H is a cyclic group.

Maximal cyclic ghost centers are mapped to maximal cyclic ghost centers under an isomorphism.
To prove that isomorphism of stabilized automorphism groups of mixing SFT’s upgrades to leveled isomorphism, we use the concept of ghost centers:

- A subgroup $H \subset \text{Aut}^{(\infty)}(\sigma_n)$ is a ghost center if for every finitely generated subgroup K, $K \cap H \neq \{e\}$.

Say a ghost center H is:

- Maximal if it is not properly contained in any other ghost center.
- Cyclic if H is a cyclic group.

Maximal cyclic ghost centers are mapped to maximal cyclic ghost centers under an isomorphism.

Now one shows that:
To prove that isomorphism of stabilized automorphism groups of mixing SFT’s upgrades to leveled isomorphism, we use the concept of ghost centers:

- A subgroup $H \subset \text{Aut}^{(\infty)}(\sigma_n)$ is a ghost center if for every finitely generated subgroup K, $K \cap H \neq \{e\}$.

Say a ghost center H is:

- Maximal if it is not properly contained in any other ghost center.
- Cyclic if H is a cyclic group.

Maximal cyclic ghost centers are mapped to maximal cyclic ghost centers under an isomorphism.

Now one shows that:

$H \subset \text{Aut}^{(\infty)}(\sigma_n)$ is a maximal cyclic ghost center if and only if $H = \langle \gamma \rangle$ where γ is a root of a power of σ_n.
A quick comment: given $\text{Aut}^{(\infty)}(\sigma_A)$, the question of how many ‘different’ ghost centers there are in $\text{Aut}^{(\infty)}(\sigma_A)$ seems not at all trivial.
A quick comment: given $\text{Aut}^{(\infty)}(\sigma_A)$, the question of how many ‘different’ ghost centers there are in $\text{Aut}^{(\infty)}(\sigma_A)$ seems not at all trivial.

For example, consider the question:
A quick comment: given $\text{Aut}^{(\infty)}(\sigma_A)$, the question of how many ‘different’ ghost centers there are in $\text{Aut}^{(\infty)}(\sigma_A)$ seems not at all trivial.

For example, consider the question:

Q: Are all ghost centers in $\text{Aut}^{(\infty)}(\sigma_A)$ conjugate?
A quick comment: given $\text{Aut}^{(\infty)}(\sigma_A)$, the question of how many ‘different’ ghost centers there are in $\text{Aut}^{(\infty)}(\sigma_A)$ seems not at all trivial.

For example, consider the question:

Q: Are all ghost centers in $\text{Aut}^{(\infty)}(\sigma_A)$ conjugate?

This seems to be equivalent to Williams’ Problem: if two mixing SFT’s are eventually conjugate, must they be conjugate?
A quick comment: given $\text{Aut}^{(\infty)}(\sigma_A)$, the question of how many ‘different’ ghost centers there are in $\text{Aut}^{(\infty)}(\sigma_A)$ seems not at all trivial.

For example, consider the question:

Q: Are all ghost centers in $\text{Aut}^{(\infty)}(\sigma_A)$ conjugate?

This seems to be equivalent to Williams’ Problem: if two mixing SFT’s are eventually conjugate, must they be conjugate?

(Answer is no in general; so in particular, it is not true in general that all ghost centers are always conjugate.)
A very rough idea of how to get $h_{lPS} \left(\text{Aut}^{(\infty)}(T), T \right)$ bounded above by $h_{top}(T^k)$:
A very rough idea of how to get $h_{lPS}\left(\text{Aut}^{(\infty)}(T), T\right)$ bounded above by $h_{top}(T^k)$:

- (X, T) expansive implies $\text{Fix}(T^m)$ finite for all m.
A very rough idea of how to get $h_{lPS}\left(\text{Aut}(\infty)(T), T\right)$ bounded above by $h_{top}(T^k)$:

- (X, T) expansive implies $\text{Fix}(T^m)$ finite for all m.

- Consider subrepresentations ρ_m of $\text{Aut}(\infty)(T)$ coming from the action of $\text{Aut}(T^m)$ on fixed points of T^m. These land in finite groups.
A very rough idea of how to get $h_{lPS} \left(\text{Aut}^{(\infty)}(T), T \right)$ bounded above by $h_{top}(T^k)$:

- (X, T) expansive implies $\text{Fix}(T^m)$ finite for all m.

- Consider subrepresentations ρ_m of $\text{Aut}^{(\infty)}(T)$ coming from the action of $\text{Aut}(T^m)$ on fixed points of T^m. These land in finite groups.

- For a T-locally PS_r subgroup of $\text{Aut}^{(\infty)}(T)$ H, get normal subgroups $H \cap C(T^m) \cap \ker \rho_m = H \cap \text{Aut}(T^m) \cap \ker \rho_m$.
A very rough idea of how to get $h_{lPS}\left(\text{Aut}^{(\infty)}(T), T\right)$ bounded above by $h_{\text{top}}(T^k)$:

- (X, T) expansive implies $\text{Fix}(T^m)$ finite for all m.

- Consider subrepresentations ρ_m of $\text{Aut}^{(\infty)}(T)$ coming from the action of $\text{Aut}(T^m)$ on fixed points of T^m. These land in finite groups.

- For a T-locally PS_r subgroup of $\text{Aut}^{(\infty)}(T)\ H$, get normal subgroups $H \cap C(T^m) \cap \ker \rho_m = H \cap \text{Aut}(T^m) \cap \ker \rho_m$.

- Then need to understand the structure of normal subgroups of a PS_r group.
Thank you again!