TI-82 PROGRAM: SIMPSON’S RULE & TRAPEZOIDAL RULE

KEY IN **DISPLAY** **EXPLANATION**

PRGM ➢ ➢ ➢ ENTER SIMPSON Prgm:1: SIMPSON Program named “SIMPSON”

2nd VARS 5 2 FnOff Deselects all functions

Disp 2nd α “LOWERLIMIT” Disp “LOWERLIMIT” Lower limit of integration

Input αA Input A After ?, type in the lower limit of integration

Disp 2nd α “UPPERLIMIT” Disp “UPPERLIMIT” Upper limit of integration

Input αB Input B After ?, type in the upper limit of integration

Disp 2nd α “SUBINTERVALS” Disp “N SUBINTERVALS” Number of subintervals for [A, B] is N

Disp 2nd α “ENTER EVEN N” Disp “ENTER EVEN N” The even integer N is to be entered

Input αN Input N After ?, type in N

ν STO αS ν → S 0 is stored in location S (for Simpson’s Rule)

ν STO αV ν → V 0 is stored in location V (for the Trapezoidal Rule)

(νB–νA)/νN → νW (B–A)/N → W Subinterval width (B–A)/N stored in location W

1 STO αJ 1 → J 1 is stored in location J

Lbl 1 Lbl 1 Start of loop

αA + 2αJαW STO αR A + 2JW → R Right endpoint of [A+2(j–1)W, A+2jW] stored in R

(αL + αR)/2 → STO αM (L + R)/2 → M Midpoint of [A+2(j–1)W, A+2jW] stored in M

αL STO X,T,θ L → X L is stored in location X

2nd VARS 1 1 STO αL Y₁ → L Y₁(L) is stored in location L

αM STO X,T,θ M → X M is stored in location X

2nd VARS 1 1 STO αM Y₁ → M Y₁(M) is stored in location M

αR STO X,T,θ R → X R is stored in location X

2nd VARS 1 1 STO αR Y₁ → R Y₁(R) is stored in location R

αW(αL+4αM+αR)/3 + νS STO αS W(L+4M+R)/3 + S → S New sum is stored in location S (for Simpson’s Rule)

αW(αL+2αM+αR)/2 + νV STO αV W(L+2M+R)/2 +V → V New sum is stored in location V (for Trapezoidal Rule)

IS > (νJ , νN/2) IS > (J,N/2) Increment J one step. If J>N/2, skip next command

Goto 1 Goto 1 Program returns to Lbl 1 and loops again

Disp αS Disp S Displays the Simpson’s Rule approximation S

Disp αV Disp V Displays the Trapezoidal Rule approximation V

To execute the program in order to evaluate \(\int_{a}^{b} f(x) \, dx \), do the following: 2nd QUIT (to quit the program)

Y= key in your function f(x) ENTER 2nd QUIT PRGM (choose the program) ENTER

The display reads LOWERLIMIT, ? Key in A ENTER (gives the lower limit of integration)

The display reads UPPERLIMIT, ? Key in B ENTER (gives the upper limit of integration)

The display reads ... ENTER N, ? Key in N ENTER (gives number of subinterval of [A, B])

To execute the program again, just key in ENTER

Identification of italicized words in the program: Input (PRGM ➢ 1) Display (PRGM ➢ 3)

Label (PRGM 9) Goto (PRGM φ) IS > (PRGM αA)

φ represents zero (distinguished from the letter 0) If you type αφ then you get a "space" (between two words)