1. Let G be a group of order $5 \cdot 11 \cdot 17$.
 (a) Show that G contains an element of order 187.
 (b) Show that if G contains an element of order 55 then G is cyclic.

2. Let M be an $n \times n$ complex matrix and let $R = \mathbb{C}[M]$ be the span over the complex numbers of I, M, M^2, M^3, \ldots. Show that M is diagonalizable if and only if the ring R contains no nonzero nilpotent matrices (a nilpotent matrix N is a matrix such that $N^k = 0$ for some positive integer k).

3. Let R be a commutative ring with 1 and let P be a prime ideal of R. Let M be an R-module. Define

 \[N = \{ m \in M \mid \text{there exists } r \in R, r \notin P, \text{ with } rm = 0 \}. \]

 (a) Prove that N is a submodule of M.
 (b) Suppose that $N = 0$. Let m be a nonzero element of M. Show that $Pm = \{ \pi m \mid \pi \in P \}$ is not equal to Rm.
 (c) Suppose that $N = 0$. In addition, assume that M is nonzero and has no proper nonzero submodules. Show that P is a maximal ideal of R.

4. (a) Let R be a principal ideal domain and let M be a finitely generated R-module. Show that there exists an exact sequence

 \[0 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0, \]

 where P_0 and P_1 are projective R-modules.

 (b) Let R be a commutative ring with 1 and let M be an R-module. Suppose we have a diagram of R-modules with exact rows

 \[
 \begin{array}{ccc}
 P_1 & \xrightarrow{f_1} & P_0 & \xrightarrow{h_0} & M & \xrightarrow{} & 0 \\
 & & \| & & \| \\
 Q_1 & \xrightarrow{g_1} & Q_0 & \xrightarrow{h_0} & M & \xrightarrow{} & 0 \\
 \end{array}
 \]

 where P_0 and P_1 are projective R-modules and Q_0 and Q_1 are arbitrary R-modules. Show that there are homomorphisms $h_0 : P_0 \rightarrow Q_0$ and $h_1 : P_1 \rightarrow Q_1$ such that the resulting diagram commutes.
5. (a) Let \(f(X) \) be a monic irreducible polynomial in \(\mathbb{Q}[X] \), and let \(K \) be a finite Galois extension of \(\mathbb{Q} \). If \(g, h \) are monic irreducible factors of \(f \) in \(K[X] \), show that there exists an automorphism \(\sigma \) of \(K \) over \(\mathbb{Q} \) such that \(g = \sigma(h) \) (applied coefficient-wise).
(b) Give an example where this conclusion is not valid if \(K \) is not Galois over \(\mathbb{Q} \).

6. Let \(G \) be a finite group and let \(\rho : G \to \text{GL}_n(\mathbb{C}) \) be a representation of \(G \). Let \(\chi \) be the character of \(\rho \).
(a) Let \(g \in G \). Show that \(\chi(g^{-1}) \) is the complex conjugate of \(\chi(g) \). *(Hint: What does the diagonalization of \(\rho(g) \) look like?)*
(b) Let \(g \in G \). Suppose that \(g^{-1} \) is conjugate to \(g \) (that is, \(g^{-1} = hgh^{-1} \) for some \(h \in G \)). Show that \(\chi(g) \) is a real number.
(c) Let \(S_m \) be the group of permutations of \(m \) objects. Show that every character of \(S_m \) is real valued.