1. Let G be a group acting on a set S. Assume that the action is transitive (that is, given $s, t \in S$, there exists $g \in G$ such that $gs = t$), and that the action is faithful (that is, if $g \in G$ satisfies $gs = s$ for all $s \in S$, then $g = 1$). Fix $s \in S$ and let G_s be the stabilizer of s. Show that if N is a normal subgroup of G such that $N \subseteq G_s$, then $N = 1$.

(b) Suppose G is a finite abelian group that acts faithfully and transitively on a set S. Show that G and S have the same number of elements.

2. Let

$$M = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix},$$

and let $R = \mathbb{C}[M]$ be the span over the complex numbers of I, M, M^2, M^3, \ldots.

(a) Determine the dimension over \mathbb{C} of R.

(b) Find two non-zero matrices A and B in R such that $AB = 0$.

3. Let p be prime, let $n \geq 1$. Let $R = (\mathbb{Z}/p^n\mathbb{Z})[X]/(X^p - 1)$.

(a) Let M be the ideal of R generated by p and $X - 1$. Show that M is a maximal ideal of R.

(Hint: Consider the homomorphism $f(X) \mapsto f(1) \mod p$.)

(b) Show that M is the unique prime ideal of R. (Hint: Show that $(X - 1)^p \equiv 0 \pmod{p}$.)

4. Let V and W be finite-dimensional vector spaces over \mathbb{C}. Let A be a linear transformation of V and let B be a linear transformation of W. Consider the map

$$A \otimes I - I \otimes B : V \otimes W \to V \otimes W$$

defined by mapping $v \otimes w$ to $(Av) \otimes w - v \otimes (Bw)$. Show that this map is invertible if and only if the set of eigenvalues of A is disjoint from the set of eigenvalues of B.

5. Let K be a field of characteristic 0. Let n be a positive integer and assume that K contains the nth roots of unity. Let L/K be a finite Galois extension with Galois group G and assume that G is abelian of exponent n (that is, $g^n = 1$ for all $g \in G$). Let

$$B = \{x \in K^\times \mid \sqrt[n]{x} \in L\}.$$

(a) Let $x \in B$ and $g \in G$. Choose $y \in L$ such that $y^n = x$. Show that

$$\langle x, g \rangle \overset{\text{def}}{=} \frac{g(y)}{y}.$$
is an nth root of unity that is independent of the choice of y as an nth root of x.

(b) Show that if $g, h \in G$ and $x \in B$, then $(x, gh) = (x, g)(x, h)$.
(c) Let $x \in B$. Show that if $(x, g) = 1$ for all $g \in G$, then x is the nth power of an element of K^\times.

(Note: You may not quote results from Kummer theory since they are what you are proving here.)

6. (a) Let G be a finite group and let A be a subgroup. Let r_1, \ldots, r_d be a set of coset representatives for G/A. Let $\rho : G \rightarrow GL(V)$ be a finite-dimensional representation of G over the complex numbers and let W be a subspace of V that is stable under the action of A (that is, $\rho(A) \cdot W \subseteq W$). Let

$$U = \sum_{i=1}^{d} \rho(r_i) W.$$

Show that U is stable under the action of G.

(b) Suppose that (ρ, V) is an irreducible representation of a finite group G and that G has an abelian subgroup A. Show that $\dim(V) \leq [G : A]$. (Hint: What are the irreducible representations of A?)