1. Let G be a group of order $168 = 3 \cdot 8 \cdot 7$, and assume that G has no nontrivial normal subgroups.
 (a) Show that G has eight Sylow 7-subgroups.
 (b) Let H be a Sylow 7-subgroup of G and let $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$. Show that $|N_G(H)| = 21$.
 (c) Show that G has no subgroup of order 14. (Hint: There is no element of order 2 in $N_G(H)$.)

2. Let A be an $n \times n$ matrix with entries in the complex numbers \mathbb{C}. Show that the following two statements are equivalent:
 i. A is diagonalizable
 ii. For each $x \in \mathbb{C}$,
 \[\text{Image}(xI - A) + \text{Ker}(xI - A) = \mathbb{C}^n,\]
 where I is the $n \times n$ identity matrix.

3. Let R be a commutative ring with 1 and let Q be a proper ideal of R. We say that Q is primary if it satisfies the following condition: Let $x, y \in R$ with $xy \in Q$. If $x \notin Q$ then $y^n \in Q$ for some positive integer n (depending on y). Define the radical of Q by
 \[\text{rad}(Q) = \{x \in R \mid x^n \in Q \text{ for some positive integer } n\}.\]
 Note that rad(Q) is also a proper ideal of R (do not prove this).
 (a) Prove that if Q is primary then rad(Q) is a prime ideal.
 (b) Suppose R is a principal ideal domain. Find all primary ideals of R (prove that all primary ideals are on your list, and prove that all ideals on your list are primary).

4. Let R be a commutative ring with 1 and let M be a nonzero Noetherian R-module. Let $I = \{r \in R \mid rM = 0\}$.
 (a) Show that there is an injection $R/I \to M^n$ for some $n \geq 1$.
 (b) Show that R/I is a Noetherian ring.

5. Let L/K be a finite Galois extension of fields and let $\alpha \in L$. Suppose there is an automorphism $\sigma \in \text{Gal}(L/K)$ such that $\sigma(\alpha) = \alpha + 1$.
 (a) Show that K has characteristic p for some prime $p > 0$.
 (b) If $L = K(\alpha)$, show that σ has order p.

CONTINUED ON NEXT PAGE
(c) Suppose σ generates $\text{Gal}(L/K)$. Show that $\alpha^p - \alpha \in K$.

6. Let G be a finite group and let $\rho : G \to \text{GL}_n(\mathbb{C})$ be a representation of G. Let χ be the character of ρ.

(a) Define the matrix $M = \sum_{g \in G} \rho(g)$. Show that if $M \neq 0$ then there is a nonzero vector v such that $\rho(g)v = v$ for all $g \in G$.

(b) Suppose $\sum_{g \in G} \chi(g) = 0$. Show that $M = 0$.