Applied Statistics (Ph.D. Version)

Instructions to the Student

a. Answer any six questions. Each will be graded from 0 to 10.

b. Use a different booklet for each question. Write the problem number and your code number (NOT YOUR NAME) on the cover.

c. Keep scratch work on separate pages in the same booklet.

d. If you use a "well known" theorem in your solution to any problem, it is your responsibility to make clear which theorem you are using and to justify its use.

e. You may use calculators as needed.

1. Consider the model \(Y_i = \beta_0 + \sum_j x_{ij} \beta_j + \epsilon_i \) in matrix form

\[
Y = X\beta + \varepsilon = \begin{bmatrix}
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1 \\
\end{bmatrix} \begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\beta_3 \\
\end{bmatrix} + \varepsilon
\]

(a) Show that all parameters are estimable and write out the least squares equations.

(b) If one augmented the model by adding a term \(\beta_{123}x_1x_2x_3 \), how would this term affect estimability of the parameters? What if instead one added the term \(\beta_{123}x_1x_2x_3 \)?

1
2 A drug is administered to each of \(n \) subjects and a response is observed at times \(t = 1, 2, \ldots, T \). It is believed that the effect of the drug occurs gradually over time, so the observation on subject \(i \) at time \(t \) is modeled as

\[Y_{it} = \mu + \alpha_i + \beta(t - \bar{t}) + \epsilon_{it}, \quad i = 1, \ldots, n, \quad t = 1, \ldots, T, \quad \bar{t} = (T + 1)/2. \]

The random subject effects \(\alpha_i, i = 1, \ldots, n, \) are i.i.d. \(N(0, \sigma^2_\alpha) \) and the error terms \(\epsilon_{it} \) are i.i.d. \(N(0, \sigma^2) \).

(a) Suppose the data are reduced to the time averages \(\bar{Y}_t, t = 1, \ldots, T, \) and a least squares regression line \(\bar{Y}_t = \alpha + \beta t \) is fitted to the reduced data. What is the joint distribution of the resulting estimates \(\hat{\alpha} \) and \(\hat{\beta} \)? Verify that \(\hat{\beta} \) is not a function of the \(\alpha_i \).

(b) Starting from the standard ANOVA table for a two way layout, derive an ANOVA table for this model with sums of squares for subject-to-subject variation, regression and residuals. Show that the mean square for residuals is an unbiased estimator for \(\sigma^2_e \). What are the degrees of freedom for residuals?

(c) Use the results of (b) to derive a confidence interval for \(\beta \).

3 Let \(Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}, i = 1, \ldots, I, j = 1, \ldots, J, k = 1, \ldots, K, \) where the parameters \(\mu, \alpha_i, \beta_j, \gamma_{ij} \) are unrestricted. The error terms \(\epsilon_{ijk} \) are i.i.d. \(N(0, \sigma^2) \).

(a) Show that \(\alpha_1 - \alpha_2 \) is not estimable but that \(\gamma_{11} - \gamma_{12} - \gamma_{21} + \gamma_{22} \) is estimable.

(b) Find the BLUE of \(E[Y_{ijk}] \) if the additive model holds, that is, if \(\gamma_{ij} = 0 \) for all \(i, j \).

(c) State the usual test for additivity and give its distribution under the general alternative.

4. Let \(Y_1, \ldots, Y_{im} \) be i.i.d. \(N(\mu_1, \sigma^2) \) and let \(Y_{21}, \ldots, Y_{2n} \) be i.i.d. \(N(\mu_2, k\sigma^2) \), where \(\mu_1, \mu_2, \sigma^2 \) are unknown parameters and \(k \) is a known constant. Find the BLUE of \(\mu_1 - \mu_2 \) and provide a confidence interval for this quantity.
5. For population values \(y_1, \ldots, y_N \), consider the \(i \)th systematic sample of size \(n \):
\[
y_{i}, y_{i+k}, y_{i+2k}, \ldots, y_{i+(n-1)k}, \quad i = 1, \ldots, k, \quad N = kn
\]
Let \(y_{ij} \) denote the \(j \)th element, \(j = 1, \ldots, n \), of systematic sample \(i \).

(a) Obtain the basic ANOVA table for the above population.

(b) Show that the population variance \(S^2 \) can be expressed in terms of the
 between and within sample sums of squares

(c) Define
\[
S_{wys}^2 = \frac{1}{k(n-1)} \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_i)^2.
\]
Obtain a condition in terms of \(S_{wys}^2 \) under which the mean of a systematic sample is more precise than the mean from a simple random sample. Interpret your result.

6. In most cases, positive geophysical data such as duration of snowstorms have skewed distributions. Suppose that for some positive geophysical data \(Y = (Y_1, \ldots, Y_n)^T \) and for some \(\lambda \in (-3, 3) \) the transformation
\[
Y_i^{(\lambda)} = g(Y_i, \lambda) = ax_i + \epsilon_i
\]
gives a linear model with independent errors \(\epsilon_i \sim N(0, \sigma^2) \), where
\[
g(y, \lambda) = \begin{cases}
(y^\lambda - 1)/\lambda, & \text{if } \lambda \neq 0, \\
\log y & \text{if } \lambda = 0
\end{cases}
\]

(a) Obtain the likelihood for the original data \(Y \) in terms of \(Y^{(\lambda)} = (Y_1^{(\lambda)}, \ldots, Y_n^{(\lambda)})^T \).

(b) For a fixed \(\lambda \), write down the maximized log-likelihood.

(c) Suggest a way to estimate \(\lambda \)
7. A sample S of size n is drawn sequentially from a population U of size N as follows:

(i) The first element drawn is element k with probability p_k, $k = 1, \ldots, N$.

(ii) A simple random sample of size $n - 1$ is drawn from the remaining $N - 1$ elements without replacement.

Here p_1, \ldots, p_N are nonnegative numbers with $\sum_{k=1}^N p_k = 1$.

(a) What is the probability that S contains element k?

(b) What is the probability that S contains both elements j and k, $j \neq k$?

(c) What is the probability that $S = \{k_1, \ldots, k_n\}$?

8. An experimenter wishes to fit the quadratic regression model

$$Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon.$$

He claims to know that the response at $x = 1$ is exactly 10, so that

$$10 = \beta_0 + \beta_1 + \beta_2$$

with no error. Therefore he substitutes $\beta_0 = 10 - \beta_1 - \beta_2$ into the quadratic regression model to obtain

$$W = Y - 10 = \beta_1 x_1 + \beta_2 x_2 + \epsilon,$$

where $x_1 = x - 1$ and $x_2 = x^2 - 1$. He then fits the second model by ordinary least squares and claims that he has succeeded in fitting the first model subject to the restriction that the response at $x - 1$ is exactly 10. Is he correct?