Applied Statistics (Ph.D. Version)

Instructions to the Student

a. Answer all questions. Each will be graded from 0 to 10.

b. Use a different booklet for each question. Write the problem number and your code number (NOT YOUR NAME) on the cover.

c. Keep scratch work on separate pages in the same booklet.

d. If you use a “well known” theorem in your solution to any problem, it is your responsibility to make clear which theorem you are using and to justify its use.

e. You may use calculators as needed.

1. The model $Y_{ij} = \alpha_i + \beta_i(x_{ij} - \bar{x}_i) + e_{ij}$ is estimated from data (x_{ij}, Y_{ij}), $i = 1, 2, j = 1, \ldots, n_i$ where $n_1, n_2 > 2$ and the e_{ij} are i.i.d. $N(0, \sigma^2)$

(a) Compute the least squares estimates of the mean parameters and the usual unbiased estimator of σ^2.

(b) Test the hypothesis $H_0: \beta_1 = \beta_2$. What is the distribution of your test statistic under H_0?

(c) Assume that it is known that $\beta_1 = \beta_2$. Under this assumption, how would you test $H_0^*: \alpha_1 = \alpha_2$? Give the distribution of your test statistic assuming H_0^* holds and that the slopes β_i are known to be equal.
2. The main effect model \(Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + e_{ijk}, \ i = 1, \ldots, I, j = 1, \ldots, J, k = 1, \ldots, K, \) is fitted to a data set with no replication.

(a) What side conditions would you use to derive a system of solutions to the normal equations?

(b) Write out the ANOVA table, including sums of squares, degrees of freedom and expected mean squares.

(c) What is the power of the usual test of \(H_A: \alpha_1 = \cdots = \alpha_I \) against the alternative \(\alpha_1 = \sigma, \ \alpha_2 = -\sigma, \ \alpha_3 = \cdots = \alpha_I = 0. \) Express your answer in terms of an appropriate probability distribution.

3. Consider the linear model \(Y = X\beta + e \) where

\[
X = \begin{bmatrix}
1 & 1 & -1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & -1 & -1 & 1
\end{bmatrix}
\]

and \(\beta = \begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\beta_3
\end{bmatrix} \)

(a) Show that all parameters are estimable. Justify your answer.

(b) Derive the least squares equations, find \(\hat{\beta}_3 \) and compute its variance.

(c) If an additional term \(\beta_1 x_1 x_2 \) is added to the model, are the parameters still estimable?

4. Consider the one way mixed model \(Y_{ij} = \mu + a_i + e_{ij}, \ i = 1, \ldots, I, j = 1, \ldots, n. \) Assume that \(a_i \sim N(0, \sigma_a^2), e_{ij} \sim N(0, \sigma_e^2) \) and all random terms are mutually independent.

(a) Write out the ANOVA table, showing sums of squares, degrees of freedom and expected mean squares.

(b) Derive the variances and covariances of the \(Y_{ij}. \)

(c) Find a \(1 - \alpha \) confidence interval for \(\sigma_a^2/\sigma_e^2. \)
5. A population \mathcal{U} is divided into strata \mathcal{U}_h of sizes N_h, $h = 1, \ldots, H$. A stratified sample \mathcal{S} of size n is selected by independently drawing simple random samples \mathcal{S}_h of n_h units from stratum h. The goal is to estimate the population total

$$t_y = \sum_{h=1}^{H} \sum_{i \in \mathcal{U}_h} y_{hi}.$$

(a) Show that

$$\hat{t}_{st} = \sum_{h=1}^{H} \frac{N_h}{n_h} \sum_{i \in \mathcal{S}_h} y_{hi}$$

is an unbiased estimator of t_y and derive its variance in terms of the within stratum means and variances

$$\bar{y}_{th} = \frac{1}{N_h} \sum_{i \in \mathcal{U}_h} y_{hi}, \quad S_h^2 = \frac{1}{N_h - 1} \sum_{i \in \mathcal{U}_h} (y_{hi} - \bar{y}_{th})^2.$$

You may neglect the finite sample correction.

(b) Assume that n_h is proportional to N_h. Show that in general the stratified estimator \hat{t}_{st} is more efficient than the usual unbiased estimate \hat{t}_{sr} of t_y based on a simple random sample of size n which ignores the stratification of \mathcal{U}.

6. Let $Y_i = \beta_0 + \beta_1 x_i + e_i$, where the x_i are known constants and the e_i are i.i.d. $N(0, \sigma^2)$

(a) Find a $1 - \alpha$ confidence interval for $E[Y_0]$, where Y_0 is the response corresponding to a new predictor x_0.

(b) Suppose that Y_0 is observed and the goal is to make inference on the corresponding unobserved x_0. Starting from the distribution of Y_0, solve a quadratic inequality to find a $1 - \alpha$ confidence set for x_0. Is your confidence set an interval?