1. (a) Let T be any L-theory and suppose that $\{\varphi_n(x) : n \in \omega\}$ are L-formulas such that $T \models \forall x (\varphi_n(x) \rightarrow \varphi_{n+1}(x))$ for all $n \in \omega$. Suppose further that every element of every model of T realizes some φ_n. Prove that $T \models \forall x \varphi_n(x)$ for some $n \in \omega$.

(b) Let \mathfrak{A} be an L-structure, let $a \in A$, and assume that a satisfies some complete L-formula in \mathfrak{A}. Let $L' = L \cup \{c\}$, and let \mathfrak{A}' be the expansion of \mathfrak{A} to an L'-structure in which $c^{\mathfrak{A}'} = a$. Suppose that $b \in A$ and that b satisfies a complete L'-formula in \mathfrak{A}'. Prove that the pair ab satisfies a complete L-formula in \mathfrak{A}.

2. A theory T is called model complete if every embedding of models of T is an elementary embedding.

(a) Suppose that $L = \{E\}$ and T is the L-theory asserting that E is an equivalence relation with infinitely many classes, and each class is infinite. Prove that T is model complete.

(b) Prove that if T is model complete, then for every L-formula $\varphi(x_1, \ldots, x_n)$, there is an existential L-formula $\psi(x_1, \ldots, x_n)$ such that

$$T \models \forall x (\varphi(x) \leftrightarrow \psi(x))$$

3. (a) Suppose $L = \{U, \le\}$, where U is a unary predicate and \le is binary. Let \mathfrak{A} be the L-structure with universe \mathbb{R} (the real numbers), where $U^\mathfrak{A} = \mathbb{Q}$ (the rationals) and $\le^\mathfrak{A}$ is the usual ordering on \mathbb{R}. Find, with proof, all countable models of $Th(\mathfrak{A})$, up to isomorphism.

(b) Prove that if T is ω-categorical and \mathfrak{A} is the infinite, countable model, then there is $\mathfrak{B} \cong \mathfrak{A}$ with $\mathfrak{B} \neq \mathfrak{A}$.
4. (a) Prove that $Th(\mathfrak{M})$, where $\mathfrak{M} = (\omega, +, \cdot, 0, s)$, is not model complete (see Problem #2).

(b) Assume that $PA + \text{Con}(PA)$ is consistent. Use Gödel’s Second Incompleteness Theorem to conclude that $PA + \neg\text{Con}(PA)$ is consistent.

5. (a) Prove that there is an integer m so that $W_m = \{m\}$.

(b) Let $Z = \{e : W_e \neq \emptyset\}$. Prove that Z is a many-one complete, recursively enumerable subset of ω.

6. (a) Determine (with proof) whether or not $\text{TOT} = \{e : \text{e is total}\}$ is Turing equivalent to $\text{FIN} = \{e : W_e \text{ is finite}\}$.

(b) Demonstrate that $\{e : W_e \text{ is recursive}\}$ is an arithmetic subset of ω.