1. (a) Suppose T is a theory in a language with only finitely many non-logical symbols. Prove that if T has infinitely many non-isomorphic models, then T has an infinite model.

(b) Suppose $L \subseteq L'$ are languages, \mathfrak{A} is an L-structure, and T' is a consistent L'-theory. Additionally, assume that there is no model of T' whose reduct to L is elementarily equivalent to \mathfrak{A}. Prove that there is an L-sentence θ such that $\mathfrak{A} \models \theta$, but $T' \models \neg \theta$.

2. (a) Let $L = \{E\}$, where E is a binary relation, and let T be the L-theory asserting that E is an equivalence relation with infinitely many classes, and that each class is infinite. Prove that T is model complete, i.e., for all models $\mathfrak{A}, \mathfrak{B} \models T$, $\mathfrak{A} \subseteq \mathfrak{B}$ implies $\mathfrak{A} \preceq \mathfrak{B}$.

(b) Let \mathfrak{A} be any proper elementary extension of $\mathfrak{N} = (\omega, +, \cdot, <)$. An initial substructure is a substructure (not necessarily elementary) $\mathfrak{B} \subseteq \mathfrak{A}$ in which the set B is a $<$-initial segment of A. Prove that for any $a \in A$ there is an initial substructure $\mathfrak{B} \subseteq \mathfrak{A}$ with $a \in B$, but $B \neq A$. [Possible hint: Recall that there is an L-formula $\varphi(x, y, z)$ such that $k^\ell = m$ if and only if $\mathfrak{N} \models \varphi(k, \ell, m)$ for all $k, \ell, m \in \omega$.]

3. Suppose that T is a complete theory in a countable language.

(a) Prove directly from the definitions that if $\mathfrak{A} \models T$ is countable and atomic, then it embeds elementarily into every model of T. It is not sufficient to simply quote theorems from class.

(b) Suppose that some atomic $\mathfrak{A} \models T$ has a proper, elementary substructure. Prove that T has an uncountable, atomic model.
4. (a) Assume that $R \subseteq \omega^2$ is recursively enumerable and that the sets
\{R_k : k \in \omega\} are all infinite and are pairwise disjoint. Prove that
there is a recursive set $C \subseteq \omega$ that intersects each R_k in exactly
one point.

(b) Prove that every decidable theory in a language with finitely many
non-logical symbols has a complete, decidable extension.

5. Let Fm_x denote the set of formulas in the language $L = \{+, \cdot, <, s, 0\}$
whose free variables is precisely $\{x\}$. For each $\varphi(x) \in Fm_x$, let $d\varphi$
denote the sentence $\exists x(x = \lceil \varphi \rceil \land \varphi(x))$. Let $f : \omega \rightarrow \omega$ be the
(recursive) function
\[f(n) = \begin{cases} \lceil d\varphi \rceil & \text{if } n = \lceil \varphi \rceil \text{ for some } \varphi \in Fm_x \\ 0 & \text{otherwise} \end{cases} \]
and let T be any theory in which f is represented.

(a) Prove that for every formula $\theta(x) \in Fm_x$ there is a sentence ψ
such that $T \vdash \psi \leftrightarrow \theta(\lceil \psi \rceil)$.

(b) Prove that if T is a consistent theory in which every recursive
function is represented, then T is undecidable.

6. (a) Prove that $\{k \in \omega : \varphi_{2k}(3k) \uparrow\}$ is Π_1 but not Δ_1.

(b) Prove that INF is many-one reducible to ZERO, where $\text{INF} = \{e \in \omega : W_e \text{ is infinite}\}$ and $\text{ZERO} = \{e \in \omega : \forall n \varphi_e(n) = 0\}$.
1. (a) Prove that the class of cyclic groups is not an elementary class. (Recall that a group G is cyclic iff there is some $g \in G$ such that $G = \{g^n : n \in \mathbb{Z}\}$.)

(b) Prove that every countable linear order embeds isomorphically into (\mathbb{Q}, \leq).

2. (a) Let $L_1 = \{U\}$, where U is a unary predicate symbol. Prove that for any L_1-sentence θ, if θ is true in every finite L_1-structure, then θ is valid.

(b) Let $L_2 = \{R\}$, where R is a binary predicate symbol. Find (with proof) an L_2-sentence θ such that θ holds in every finite L_2-structure, but θ is not valid.

3. (a) Prove that no complete theory T extending Peano's Axioms can have a countable, saturated model.

(b) Let T be a complete theory in a countable language, and let $\Gamma(x)$, $\Phi(x)$ be 1-types such that (1) there is a model of T omitting Γ and (2) every model of T that omits Γ realizes Φ. Prove that Φ is realized in every model of T.

1
4. (a) Prove that there is a model \mathfrak{A} of Peano’s Axioms and a formula $\theta(x)$ such that $\mathfrak{A} \models \exists x \theta(x)$, yet $\mathfrak{A} \not\models \theta(n)$ for every $n \in \omega$.

(b) Suppose L has only finitely many nonlogical symbols, and T is a finitely axiomatizable L-theory such that for any L-sentence θ, if θ is not true in every model of T, then θ is false in some finite model of T. Prove that T is decidable.

5. (a) Prove that there is no total recursive $f : \omega \rightarrow \omega$ such that for all $e \in \omega$, if W_e is finite, then $W_e \subseteq \{0, 1, \ldots, f(e)\}$.

(b) Construct an r.e. subset $A \subseteq \omega$ such that $\omega \setminus A$ is infinite, but $A \cap B$ is nonempty for every infinite, r.e. set B.

6. (a) Give an example (with justifications) of two sets $A, B \subseteq \omega$ such that A is Turing reducible to B, but A is not many-one reducible to B.

(b) Exhibit (with proof) two disjoint, r.e. sets A and B that are recursively inseparable, i.e., there is no recursive C such that $A \subseteq C$, but $B \cap C = \emptyset$.
1. Suppose that $L \subseteq L'$ are languages, \mathcal{A} is an L-structure, and T' is an L'-theory such that $T' \cup Th_L(\mathcal{A})$ is consistent.

 (a) Prove that there is an L'-structure $\mathcal{B} \models T'$ such that the L-reduct, $\mathcal{B} = \mathcal{B}'|_L$ elementarily extends \mathcal{A}.

 (b) Prove that there is a model of T' realizing every 1-type $\Gamma(x)$ in the language L consistent with $Th(\mathcal{A})$.

2. Let $D(x, y)$ denote the divisibility relation on ω, i.e., $D(n, m)$ if and only if n divides m. Let $\mathcal{A} = (\omega, D)$.

 (a) Prove that the set of primes is definable in \mathcal{A}.

 (b) Prove that \mathcal{A} has a nontrivial automorphism, i.e., an isomorphism $f : \mathcal{A} \rightarrow \mathcal{A}$ such that $f(n) \neq n$ for at least one $n \in \omega$.

3. (a) Prove that if \mathcal{A} is an infinite, countable, saturated model then there is a countable, saturated $\mathcal{B} \subseteq \mathcal{A}$ with $\mathcal{B} \neq \mathcal{A}$.

 (b) Let $\mathcal{A}_0 \preceq \mathcal{B}_0 \preceq \mathcal{A}_1 \preceq \mathcal{B}_1 \preceq \mathcal{A}_2 \preceq \ldots$ be an elementary chain of models where each \mathcal{A}_n is countable and saturated, and each \mathcal{B}_n is not saturated. Prove that $\bigcup_{n \in \omega} \mathcal{B}_n$ is countable and saturated.
4. (a) Let $\mathcal{N} = (\omega, +, \cdot, 0, 1)$ denote the standard model of arithmetic, and let PA denote Peano's axioms. Prove that there is a countable $\mathfrak{A} \models PA$ such that $\mathfrak{N} \subseteq \mathfrak{A}$, but $\mathfrak{N} \not\subseteq \mathfrak{A}$.

(b) Given a binary function $g : \omega \times \omega \rightarrow \omega$, let g^* be the partial function defined by

$$g^*(x) = \begin{cases} y & \text{if, for some } n, g(m, x) = y \text{ for all } m \geq n \\ \uparrow & \text{otherwise} \end{cases}$$

Construct a (total) recursive $g : \omega \times \omega \rightarrow \omega$ such that the domain of g^* is a non-recursively enumerable set, e.g., \overline{K}.

5. Let $E(x, y) = x^y$ denote the exponential function.

(a) Prove that the graph of multiplication is definable in the structure (ω, E).

(b) Prove that the structure (ω, E) is strongly undecidable.

6. For $X \subseteq \omega$, let $S_X = \{ e \in \omega : W_e = X \}$

(a) Prove that S_X is Π_3 for every recursive set X.

(b) Find (with proof) a recursive $X \subseteq \omega$ such that S_X is not Π_3-complete.
1. (a) Let \mathfrak{A} and \mathfrak{B} be elementarily equivalent structures in the same language L. Prove that there is an L-structure \mathfrak{C} and elementary embeddings $f : \mathfrak{A} \rightarrow \mathfrak{C}$ and $g : \mathfrak{B} \rightarrow \mathfrak{C}$.

(b) Let $L = \{<, U\}$, where U is unary and $<$ is binary. Let \mathfrak{A} be any L-structure with universe the rationals \mathbb{Q}, where $<^\mathfrak{A}$ is interpreted as the usual ordering on \mathbb{Q} and $U^\mathfrak{A}$ is any dense, codense subset, e.g.,

$$U^\mathfrak{A} = \left\{ \frac{n}{2k} : n, k \text{ are integers} \right\}$$

Prove that $Th(\mathfrak{A})$ is ω-categorical.

2. (a) Let $L = \{+, \cdot, 0, 1\}$ and let $\mathfrak{N} = (\omega, +, \cdot, 0, 1)$ be the standard model of arithmetic. Let $\varphi(x)$ be any L-formula defining the set of prime numbers in ω. Prove that if \mathfrak{A} is an elementary extension of \mathfrak{N} and $\mathfrak{A} \neq \mathfrak{N}$, then there is $a \in A \setminus \omega$ such that $\mathfrak{A} \models \varphi(a)$.

(b) Prove that every model (even the uncountable ones) of an ω-categorical theory in a countable language is atomic.

3. Let T be a complete theory in a countable language.

(a) Prove that if \mathfrak{A} is a countably universal model of T, then \mathfrak{A} has an ω-saturated elementary substructure.

(b) Prove that if \mathfrak{A} is an infinite, countable, ω-saturated model of T, then \mathfrak{A} has a nontrivial automorphism, i.e., an isomorphism $f : \mathfrak{A} \rightarrow \mathfrak{A}$ such that $f(a) \neq a$ for at least one $a \in A$.

4. Let $L = \{ f \}$, where f is a binary function symbol, and let $Valid_L$ denote the set of valid sentences in this language.

(a) Prove that $Valid_L$ is not essentially undecidable.

(b) Find an L-sentence $\sigma \notin Valid_L$, yet σ holds in every finite L-structure.

5. (a) Suppose that every recursively enumerable set A is many-one reducible to a fixed set $B \subseteq \omega$. Prove that B contains an infinite, recursively enumerable subset.

(b) Let $A = \{ e \in \omega : W_e \text{ is finite} \}$ and $B = \{ e \in \omega : W_e \text{ is infinite} \}$. Prove that A is Turing reducible to B, but not many-one reducible to B.

6. (a) Prove or disprove: If a binary relation R is r.e. and $|R_k| \leq 2$ for each k, then R is recursive.

(b) Let $A \subseteq \omega$ be weakly represented, but not represented by a formula $\varphi(x)$ with respect to Q. Prove that there is a consistent, recursively axiomatizable theory $T \supseteq Q$ such that A is not weakly represented by $\varphi(x)$ with respect to T.
1. (a) Prove that if $\mathfrak{A} \preceq \mathfrak{B}$ and A is finite, then $\mathfrak{A} = \mathfrak{B}$.

(b) Suppose that \mathfrak{A} and \mathfrak{B} are structures in the same language L that satisfy the same universal sentences. Prove that there is an L-structure \mathfrak{C} into which both \mathfrak{A} and \mathfrak{B} embed isomorphically.

2. (a) Find (with proof) all automorphisms of the structure $\mathfrak{A} = (\mathbb{Z}, +)$.

(b) Recall that a countable $\mathfrak{A} \models T$ is ω-homogeneous iff for all $n \in \omega$ and all $a_0, \ldots, a_n, b_0, \ldots, b_n \in A$ there is an automorphism h of \mathfrak{A} such that $h(a_i) = b_i$ for all $0 \leq i \leq n$ whenever $tp_{\mathfrak{A}}(a_0, \ldots, a_n) = tp_{\mathfrak{A}}(b_0, \ldots, b_n)$.

Prove that if \mathfrak{A} and \mathfrak{B} are both countable, ω-homogeneous models of T, \mathfrak{A} embeds elementarily into \mathfrak{B}, and \mathfrak{B} embeds elementarily into \mathfrak{A}, then $\mathfrak{A} \cong \mathfrak{B}$.

3. Let T be a complete theory in a countable language.

(a) Prove that if T does not have a prime model, then T has uncountably many nonisomorphic countable models.

(b) Let X be a countable set of 1-types such that for every finite $F \subseteq X$ there is a model $\mathfrak{A}_F \models T$ omitting every $\Phi \in F$. Prove that there is a model $\mathfrak{B} \models T$ omitting every $\Phi \in X$.
4. (a) Suppose that \(T \) is a recursively axiomatizable theory in a finite language \(L \) that has no infinite models. Prove that \(T \) is decidable.

(b) Let \(L = \{+,-,0,s,<\} \) and let \(Valid_L \) denote the set of valid \(L \)-sentences. Prove that \(Valid_L \) is undecidable, but not essentially undecidable.

5. (a) Let \(T \) be any consistent, recursively axiomatizable extension of Robinson’s \(Q \) and let \(Thm_T = \{ \sigma \in T : T \vdash \sigma \} \). Prove that \(Thm_T \) is weakly represented in \(Q \), but is not represented in \(Q \).

(b) Let \(PA \) denote Peano’s Axioms. Use Gödel’s 2nd Incompleteness Theorem to prove that if \(PA \) is consistent, then

\[
PA \cup \{Con(PA + \neg Con(PA))\}
\]

has a model.

6. Let \(K = \{ e \in \omega : \{e\}(e) \downarrow \} \) and \(Even = \{ e \in \omega : W_e = \{2n : n \in \omega \} \} \).

(a) Prove that there is an infinite, r.e. \(B \) such that \(K \) and \(B \) are recursively inseparable.

(b) Prove that \(Even \leq_r 0’ \).
1. (a) Let T be any theory in a language L that has an infinite model. Prove that T has a model \mathfrak{A} with an element $a \in A$ such that $a \neq c^\mathfrak{A}$ for every constant symbol $c \in L$.

(b) Suppose that \mathfrak{A} is a saturated model of $Th(\mathfrak{A})$, and that a complete 1-type $\Phi(x)$ is realized by only finitely many elements of \mathfrak{A}. Prove that there is a formula $\varphi(x) \in \Phi(x)$ such that φ is realized by only finitely many elements of \mathfrak{A}.

2. (a) Let $L^\text{nil} = \{+, \cdot, 0, 1, \leq\}$. Prove that any proper elementary extension $\mathfrak{B} > (\mathbb{R}, +, \cdot, 0, 1, \leq)$ contains an element $b \in B$ such that $\mathfrak{B} \models b > r$ for every $r \in \mathbb{R}$.

(b) Recall that a countable model \mathfrak{A} is ω-homogeneous iff for all $n \in \omega$ and all $a_0, \ldots, a_n, b_0, \ldots, b_n \in A$ there is an automorphism h of \mathfrak{A} such that $h(a_i) = b_i$ for all $0 \leq i \leq n$ whenever $tp_\mathfrak{A}(a_0, \ldots, a_n) = tp_\mathfrak{A}(b_0, \ldots, b_n)$.

Prove that every countable model in a countable language has a countable, ω-homogeneous elementary extension.

3. Let $L^\text{nil} = \{E\}$, where E is a binary relation symbol. Let T be the theory asserting that E is an equivalence relation with exactly two classes, both of which are infinite.

(a) Prove that T is a complete L-theory.

(b) Prove that if \mathfrak{A} and \mathfrak{B} are models of T and $\mathfrak{A} \subseteq \mathfrak{B}$, then $\mathfrak{A} \prec \mathfrak{B}$.
4. (a) Suppose that T is a recursively axiomatizable theory with a model $\mathfrak{A} \models T$ that embeds elementarily into every model of T. Prove that T is decidable.

(b) Assume that $A \subseteq \omega$ is recursive, $R \subseteq \omega \times \omega$ is r.e., and that $\bigcup_{k \in \omega} R_k = A$. Prove that there is a recursive $S \subseteq R$ such that $\bigcup_{k \in \omega} S_k = A$.

5. Let $\mathcal{F} = \{\text{all functions } f : \omega \to \omega \text{ such that } f(n+1) = nf(n) \text{ for all but finitely many } n \in \omega\}$.

(a) Prove that every $f \in \mathcal{F}$ is recursive.

(b) Prove that there is a recursive function $g : \omega \to \omega$ such that for every $f \in \mathcal{F}$ there is an $N \in \omega$ such that $g(n) \geq f(n)$ for every $n \geq N$.

6. (a) Let T be a consistent, recursively axiomatizable theory containing the axioms for Q. Prove that for every formula $\varphi(x)$ of the language for Q there is a sentence σ such that $T \vdash \sigma \iff \varphi(\overline{x})$.

(b) Recall that $K = \{e : \{e\}(e) \downarrow\}$ and $\overline{K} = \omega \setminus K$. Prove that K is not many-one reducible to \overline{K}.
1. a) Prove or disprove: \((\mathbb{Z}, <)\) has a proper elementary substructure.

b) Let \(L^{nl} = \{E\}\) where \(E\) is a binary relation symbol. Let \(\mathfrak{A}\) be the countable \(L\)-structure in which \(E^\mathfrak{A}\) is an equivalence relation such that \(E^\mathfrak{A}\) has no infinite equivalence classes and for every \(n \geq 1\) there is exactly one \(E^\mathfrak{A}\)-class with exactly \(n\) elements. Prove that \(Th(\mathfrak{A})\) has exactly one countable model with infinitely many infinite equivalence classes.

2. a) Let \(T\) be a theory in a language \(L\). Assume that whenever \(\theta_1\) and \(\theta_2\) are universal sentences of \(L\) and \(T \models (\theta_1 \lor \theta_2)\) then either \(T \models \theta_1\) or \(T \models \theta_2\). Prove that for any \(\mathfrak{A}, \mathfrak{B} \models T\) there is some \(\mathfrak{C} \models T\) such that both \(\mathfrak{A}\) and \(\mathfrak{B}\) can be embedded in \(\mathfrak{C}\). [Recall that \(\theta\) is universal iff it has the form \(\forall x_1 \ldots \forall x_n \varphi\) where \(\varphi\) is an open formula]

b) Let \(T\) be an \(\omega\)-categorical theory in a countable language \(L\). Prove that every uncountable model of \(T\) is \(\omega\)-saturated.

3. a) Let \(T\) be a complete theory in a countable language \(L\). Let \(\mathfrak{A}\) be a countable \(\omega_1\)-universal model of \(T\). Prove that there is some \(\omega\)-saturated \(\mathfrak{B}\) such that \(\mathfrak{B} < \mathfrak{A}\).

b) Let \(T\) be a complete theory in a countable language \(L\) and let \(\Phi(x)\) be an \(L\)-type. Assume that \(\Phi\) is realized by at most two elements in every model of \(T\). Prove that there is some formula \(\varphi(x)\) of \(L\) such that for every \(\mathfrak{A} \models T\), \(\Phi^\mathfrak{A} = \varphi^\mathfrak{A}\).
4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. but not recursive and that $R_k \cap R_l = \emptyset$ for all $k \neq l$. Prove that $(\omega \setminus \bigcup_{k \in \omega} R_k)$ is infinite.

b) Prove that $\{ \sigma^\infty : \sigma$ is an open sentence and $\mathcal{M} \models \sigma \}$ is recursive.

5. a) Let $A, B \subseteq \omega$ be recursively inseparable r.e. sets. Assume that $A \leq_m C$ for some $C \subseteq \omega$. Prove that $(\omega \setminus C)$ contains an infinite r.e. subset.

b) Let f, g be total recursive functions of one argument. Let $I_f = \{ e \in \omega : \{e\} = f \}$ and $I_g = \{ e \in \omega : \{e\} = g \}$.

Prove that $I_f =_m I_g$.

6. a) Let $R \subseteq \omega \times \omega$ be r.e. Let $A = \{ k \in \omega : R_k$ is cofinite}. Prove that A is arithmetic.

b) Prove that there are infinitely many $e \in \omega$ such that $\{e\}(2e) = 3e$.

1. Let L be a countable language and let $\{T_n\}_{n\in \omega}$ be L-theories such that $T_n \subseteq T_{n+1}$ for all $n \in \omega$. Let $T^* = \bigcup_{n\in \omega} T_n$ and let $\Phi(x)$ be an L-type.

Prove or disprove (with a counterexample) each of the following.

a) If each T_n has a model realizing Φ then T^* has a model realizing Φ.

b) If each T_n has a model omitting Φ then T^* has a model omitting Φ.

2. a) Let T be a theory in a language L and let \mathfrak{B} be an L-structure. Assume that whenever θ is a universal sentence of L and $T \models \theta$ then $\mathfrak{B} \models \theta$. Prove that \mathfrak{B} can be embedded in some model of T. [Recall that θ is universal iff it has the form $\forall x_1 \ldots \forall x_n \varphi$ where φ is an open formula]

b) Let T be a complete theory of L. Assume that T has some model which realizes just finitely many complete types in one variable. Prove that every model of T realizes just finitely many complete types in one variable.

3. a) Let T be a complete theory in a countable language L and let $\Phi(x)$ be an L-type. Assume that any two countable models of T omitting Φ are isomorphic. Prove that every countable model of T omitting Φ is prime. [Warning: you are not given that T has a prime model]

b) Recall that a countable model \mathfrak{A} is ω-homogeneous iff for all $n \in \omega$ and all $a_0, \ldots, a_n, b_0, \ldots, b_n \in A$ there is an automorphism h of \mathfrak{A} such that $h(a_i) = b_i$ for all $0 \leq i \leq n$ whenever $tp_\mathfrak{A}(a_0, \ldots, a_n) = tp_\mathfrak{A}(b_0, \ldots, b_n)$.
Let T be a complete theory of a countable language L, and assume that $\mathfrak{A} \models T$ is countable, ω-homogeneous, and ω_1-universal. Prove that \mathfrak{A} is ω-saturated.

4. a) Let $f : \omega \rightarrow \omega$ be a (total) function. Assume that there is some finite $X \subseteq \omega$ such that for all $n \in (\omega \setminus X)$ we have $f(n + 1) = f(n) + 1$. Prove or disprove (with a counterexample): f is recursive.

b) Let T be a recursively axiomatizable theory containing the axioms for Q such that $\mathfrak{A} \models T$. Prove that there is some formula $\varphi(x)$ (of the language for Q) such that $T \vdash \varphi(n)$ for all $n \in \omega$ but $T \not\vdash \forall x \varphi(x)$.

5. a) Let $A \subseteq \omega$ be infinite and r.e. Prove that there are infinite recursive sets $B_0, B_1 \subseteq A$ such that $(B_0 \cap B_1) = \emptyset$.

b) Define sets $A, B \subseteq \omega$ such that A is r.e. in B but $(\omega \setminus A)$ is not r.e. in $(\omega \setminus B)$. [You must prove the sets you define have these properties]

6. a) Let $I = \{ e : |W_e| = 1 \}$. Prove that $A \leq_m I$ for every r.e. $A \subseteq \omega$.

b) Prove that there is some $n \in \omega$ such that W_n is the set whose only element is n.
1. a) Prove or disprove: \(\{1\}\) is definable (by an \(L\)-formula) in the structure \((\mathbb{Q}, <, +)\) for the language \(L\) with \(L_{\text{nl}} = \{<, +\}\).

b) Assume that \(\{T_n : n \in \omega\}\) is a sequence of consistent theories in a language \(L\) such that \(T_n \subseteq T_{n+1}\) for all \(n \in \omega\) and \(T_n \not\models T_{n+1}\) for all \(n \in \omega\). Prove that \(T^* = \bigcup_{n \in \omega} T_n\) is a consistent theory and that \(T^*\) is not finitely axiomatizable.

2. a) Let \(L\) be the language whose only non-logical symbol is the binary relation symbol \(E\). An \(L\)-structure \(\mathfrak{A}\) is called a graph provided \(\mathfrak{A} \models \forall x \forall y (Exy \rightarrow Eyx)\) and \(\mathfrak{A} \models \forall x \neg Exx\).

A graph \(\mathfrak{A}\) is connected iff for all \(a \neq a^*\) in \(A\) either \(E^g(a, a^*)\) holds or there are \(a_1, \ldots, a_n \in A\) for some positive integer \(n\) such that \(E^g(a, a_1), E^g(a_i, a_{i+1})\) for all \(1 \leq i < n\), and \(E^g(a_n, a^*)\) all hold. Prove or disprove each of the following:

a) Every elementary substructure of a connected graph \(\mathfrak{A}\) is connected.

b) Every elementary extension of a connected graph \(\mathfrak{A}\) is connected.

3. a) Let \(T\) be a complete theory in a countable language \(L\) which has a prime model \(\mathfrak{A}\). Assume further that \(\mathfrak{A}\) realizes every \(L\)-type (in finitely many variables) consistent with \(T\). Prove that \(T\) is \(\omega\)-categorical.
b) Let T be a complete theory in a countable language L and let $\Phi(x)$ be an L-type consistent with T which is omitted in some model of T. Prove that Φ is realized by infinitely many elements in some model of T.

4. a) Let L be the language with $L^{\mu l} = \{+,-,>,\leq,0,s\}$ and let $\mathcal{N} = (\omega,+,\cdot,\leq,0,s)$. Let T be a recursively axiomatizable L-theory such that $\mathcal{N} \models T$, let $\varphi(x)$ be a Σ-formula of L, and let $D = \varphi^{\mathcal{N}}$. Assume that D is not recursive. Prove that there is some $\mathcal{A} \models T$ and some $n \in (\omega \setminus D)$ such that $\mathcal{A} \models \varphi(n)$.

b) Let $A, B \subseteq \omega$ be disjoint r.e., non-recursive sets. Prove that $(A \cup B)$ is not recursive.

5. a) Let $R \subseteq (\omega \times \omega)$ be r.e., and assume that R_k is infinite for all $k \in \omega$. Prove that there is some recursive $C \subseteq \omega$ such that $(C \cap R_k) \neq \emptyset$ for all $k \in \omega$ and such that $(\omega \setminus C)$ is infinite.

b) Prove that there is some $f : \omega \rightarrow \omega$ such that for every recursive $g : \omega \rightarrow \omega$ there is some $n \in \omega$ such that $g(k) < f(k)$ for all $k \geq n$.

6. a) Let $A = \{e : \{e\}(k) = 0 \text{ for all } k \in \omega\}$ and let $B = \{e : \{e\}(k) = 1 \text{ for all } k \in \omega\}$. Prove that $A \equiv_m B$.

b) Let \mathcal{N} be the standard model for arithmetic on the natural numbers, and let $T = \{\sigma^{-1} : \mathcal{N} \models \sigma\}$. Prove that $A \leq_m T$ for every arithmetic set A.
1. a) Let L be a language containing (at least) the binary relation symbol E. Let \mathfrak{A} be an L-structure such that $E^\mathfrak{A}$ is an equivalence relation on A. Prove that every $E^\mathfrak{A}$-equivalence class is finite iff every proper elementary extension \mathfrak{B} of \mathfrak{A} contains an element which is not $E^\mathfrak{B}$-equivalent to any element of \mathfrak{A}.

b) Let T be a theory in a language L and let $\Phi(x)$ and $\Psi(y)$ be L-types. Assume that no model of T realizes both $\Phi(x)$ and $\Psi(y)$. Prove that there is some $\theta \in Sn_L$ such that whenever $\mathfrak{A} \models T$ and \mathfrak{A} realizes $\Phi(x)$ then $\mathfrak{A} \models \theta$, and whenever $\mathfrak{A} \models T$ and \mathfrak{A} realizes $\Psi(y)$ then $\mathfrak{A} \models \neg \theta$.

2. a) Let \mathfrak{A} be an L-structure. Assume that $Th(\mathfrak{A})$ is axiomatized by some $\Sigma \subseteq Sn_{L(\mathfrak{A})}$ such that every sentence in Σ is either universal or the negation of a universal sentence. Prove that $Th(\mathfrak{A})$ is axiomatized by some $\Sigma^* \subseteq Sn_{L(\mathfrak{A})}$ consisting solely of universal sentences. [Recall that θ is universal iff it has the form $\forall x_0 \ldots \forall x_k \varphi$ where φ is an open formula.]

b) Let T be a complete theory in a countable language L. Assume that there is some complete non-principal 1-type consistent with T. Prove that every model of T realizes infinitely many complete 1-types.

3. Let \mathfrak{A} be an L-structure and let $\Phi(x)$ be a complete L-type. Assume that $\Phi(x)$ is realized by exactly three elements in \mathfrak{A}.

a) Assuming, in addition, that \(\Phi(x) \) is principal, prove that \(\Phi(x) \) is realized by exactly three elements in every \(L \)-structure \(\mathfrak{B} \) elementarily equivalent to \(\mathfrak{A} \).

b) Assuming, in addition, that \(\mathfrak{A} \) is \(\omega \)-saturated (but not that \(\Phi \) is principal), prove that \(\Phi(x) \) is realized by exactly three elements in every \(L \)-structure \(\mathfrak{B} \) elementarily equivalent to \(\mathfrak{A} \).

c) Give an example of \(L \), \(L \)-structures \(\mathfrak{A} \) and \(\mathfrak{B} \), and a complete \(L \)-type \(\Phi(x) \) such that \(\Phi(x) \) is realized by exactly three elements in \(\mathfrak{A} \) and \(\mathfrak{A} \equiv \mathfrak{B} \), but \(\Phi(x) \) is not realized by exactly three elements in \(\mathfrak{B} \).

4. a) Let \(S \subseteq (\omega \times \omega) \) be r.e., and assume that \(\bigcup_{k \in \omega} S_k \) is recursive. Prove that there is some recursive \(R \subseteq (\omega \times \omega) \) such that \(R_k \subseteq S_k \) for all \(k \in \omega \) and \(\bigcup_{k \in \omega} R_k = \bigcup_{k \in \omega} S_k \).

b) Let \(T \) be a consistent theory in a language with just finitely many non-logical symbols, including at least the unary function symbol \(s \) and the constant \(0 \). Assume that every recursive relation is representable in \(T \). Prove that \(T \) is undecidable.

5. a) Let \(A_0 = \{ e \in \omega : \forall k(\{ e \}(k) = 0) \} \) and \(A_1 = \{ e \in \omega : \forall k(\{ e \}(k) = 1) \} \). Prove or disprove: there is some recursive \(B \subseteq \omega \) such that \(A_0 \subseteq B \) and \((A_1 \cap B) = \emptyset \).

b) Let \(A, B \subseteq \omega \). Explicitly define some \(C \subseteq \omega \) such that the Turing degree of \(C \) is the least upper bound of the Turing degree of \(A \) and the Turing degree of \(B \). You must prove that \(C \) has these properties.

6. a) Recall that \(\text{INF} = \{ e \in \omega : W_e \text{ is infinite} \} \). Prove that \(\text{INF} \leq_m \{ e \in \omega : \forall k(\{ e \}(k) = 0) \} \).

b) Define \(E \subseteq (\omega \times \omega) \) by \(E = \{ (e_1, e_2) : \{ e_1 \} = \{ e_2 \} \} \). Place \(E \) in the arithmetic hierarchy, that is determine (with proof) some \(n \in \omega \) such that either \(E \in \Sigma_n \) or \(E \in \Pi_n \).
1. a) Let L be a language containing (at least) the unary function symbol s. An L-structure \mathfrak{A} is periodic iff for every $a \in A$ there is some positive integer n such that $(s^A)^n(a) = a$. Prove that there is no L-theory T such that for all L-structures \mathfrak{A}, $\mathfrak{A} \models T$ iff \mathfrak{A} is periodic.

b) Let T be a complete ω-categorical theory in a countable language L. Let $\varphi(x, y) \in Fm_L$ and let \mathfrak{A} be any model of T. Prove that there is some $n \in \omega$ such that for every $a \in A$ either $|\varphi^\mathfrak{A}(x, a)| < n$ or $\varphi^\mathfrak{A}(x, a)$ is infinite.

2. a) Let L be the language with $L^{\text{ul}} = \{+,-,\cdot,\leq,0,s\}$, let $\mathfrak{N} = (\omega, +, -, \cdot, \leq,0,s)$, and let \mathfrak{A} be any proper elementary extension of \mathfrak{N}. Let $\varphi(x) \in Fm_L$. Prove that $\varphi^\mathfrak{A}$ is infinite if and only if there is some $a \in A$ such that $a \in (\varphi^\mathfrak{A} \setminus \omega)$.

b) Let T be a complete theory in a countable language L. Let $\Phi(x)$ and $\Psi(x)$ be types consistent with T. Assume that every model of T realizes either Φ or Ψ (or both). Prove that either every model of T realizes Φ or every model of T realizes Ψ.

3. Let T be a complete theory in a countable language L with infinite models.

a) Prove that every countable model of T has a proper countable elementary extension.
b) Assume that $\mathfrak{A} \models T$ is countable and ω_1-universal. Prove that \mathfrak{A} is isomorphic to some proper elementary extension of itself.

c) Assume that $\mathfrak{A} \models T$ is countable and isomorphic to every countable elementary extension of itself. Prove that \mathfrak{A} is ω-saturated.

4. Let L be the language with $L^{al} = \{+, \cdot, <, 0, s\}$ and let $\mathfrak{M} = (\omega, +, \cdot, <, 0, s)$.

 a) Define the function $\pi : \omega \to \omega$ by $\pi(n) =$ the number of primes $\leq n$. Prove or disprove: there is some $\varphi(x, y) \in \text{Fm}_L$ which defines the graph of π (that is, the relation $\pi(n) = l$) in \mathfrak{M}.

 b) Prove that there is some $\theta(y) \in \text{Fm}_L$ such that for every Σ-formula $\varphi(x)$ and for every $n \in \omega$ we have $\mathfrak{M} \models \theta([\varphi(\bar{n})])$ iff $\mathfrak{M} \models \varphi(\bar{n})$.

5. a) Assume that $R \subseteq \omega \times \omega$ is r.e., R_k is infinite for all $k \in \omega$, and $(R_k \cap R_l) = \emptyset$ whenever $k \neq l$. Prove that there is some recursive $C \subseteq \omega$ such that $|C \cap R_k| = 1$ for all $k \in \omega$.

 b) Give an example of a theory T in a language L with just finitely many non-logical symbols which is undecidable but not essentially undecidable (you must establish these properties of T).

6. a) Prove or disprove: there is some arithmetic relation $R \subseteq \omega \times \omega$ such that for every arithmetic $X \subseteq \omega$ there is some $k \in \omega$ such that $X = R_k$.

 Let $A = \{e \in \omega : 0 \in W_e\}$, $B = \{e \in \omega : 1 \in W_e\}$, and let $C = \{e \in \omega : 0 \not\in W_e\}$. Prove that

 b) $A \leq_m B$, but

 c) $A \not\leq_m C$.

1. a) Let T be a theory in a language L and let $\varphi(x), \psi_k(x) \in Fm_L$ for all $k \in \omega$. Assume that $T \models \forall x (\psi_k \rightarrow \psi_{k+1})$ for all $k \in \omega$. Assume further that for every $A \models T$ and every $a \in A$ we have

$$A \models \varphi(a) \iff \text{there is some } k \in \omega \text{ such that } A \models \psi_k(a).$$

Prove that there is some $k \in \omega$ such that $T \models \forall x (\varphi \leftrightarrow \psi_k)$.

b) Prove that there is some $A \equiv (\omega, <)$ such that $(\mathbb{R}, <)$ can be isomorphically embedded into A.

2. a) Let L be the language whose only non-logical symbol is a binary relation symbol $<$ and let \mathfrak{B} be the L-structure $(\mathbb{Q}, <)$. Let $X \subseteq \mathbb{Q}$ be finite. Prove that the set \mathbb{Z} is not definable in the $L(X)$-structure \mathfrak{B}_X.

b) Let L be the language whose only non-logical symbol is a binary relation symbol E. Let \mathfrak{A} be the L-structure such that

$E^\mathfrak{A}$ is an equivalence relation on A,

there is exactly one n-element equivalence class for every positive integer n, and

there are no infinite equivalence classes.

Is there is some proper substructure \mathfrak{B} of \mathfrak{A} such that $\mathfrak{A} \equiv \mathfrak{B}$? Prove or disprove.

3. a) Let T be a complete theory in a countable language L. Assume that T has no countable ω-saturated model. Prove that every type consistent with T is realized on at least two non-isomorphic countable models of T.

1
b) Let T be a complete theory in a countable language L. Let $\Phi(x)$ be a complete non-principal type consistent with T. Let \mathcal{A} be an ω-saturated model of T. Prove that Φ is realized by infinitely many elements of A.

4. a) Let T be a consistent recursively axiomatizable theory in the language L for arithmetic, let $\varphi(x) \in Fm_L$, and let $A \subseteq \omega$. Assume that A is weakly representable in T by φ and A is not recursive. Prove that there is some $k \in \omega$ such that $k \notin A$, $T \not\vdash \varphi(k)$, and $T \not\vdash \varphi(k)$.

b) Let L be a language with just finitely many non-logical symbols which contains at least the unary function symbol s and the constant symbol $\bar{0}$. Let T be a consistent theory of L such that all recursive functions and relations are representable in T. Prove that T is undecidable.

5. a) Let $A \subseteq \omega$ be an infinite r.e. set. Prove that there are infinite recursive sets B_0 and B_1 contained in A such that $(B_0 \cap B_1) = \emptyset$.

b) Let $A, B \subseteq \omega$. Prove that B is r.e. in A iff $B \leq_m A'$.

6. a) Let $A = \{e \in \omega : \{e\}(e) = e\}$. Prove that A is not recursive.

b) Let $A = \{e \in \omega : |W_e| \leq 1\}$ and let $B = \{e \in \omega : |W_e| \geq 2\}$. Prove that $A \equiv_T B$ but $A \not\equiv_m B$.

1. a) Let T be a theory in a language L containing at least the binary relation symbol E. Assume that for every $\mathcal{A} \models T$, $E^\mathcal{A}$ is an equivalence relation on A. Assume further that whenever $\mathcal{A} \models T$, $\mathcal{A} \prec \mathcal{B}$, and $a \in A$ then \{\(b \in B : E^\mathcal{B}(a, b)\) holds\} \(\subseteq A\). Prove that there is some $n \in \omega$ such that for every $\mathcal{A} \models T$ every $E^\mathcal{A}$-class has $< n$ elements.

b) Let T be a theory of L and let $\Phi(x)$ and $\Psi(x)$ be L-types. We say that a formula $\theta(x)$ of L separates Φ and Ψ if in every model of T every element realizing Φ satisfies θ and every element realizing Ψ satisfies $\neg \theta$. Assume that no formula of L separates Φ and Ψ. Prove that T has a model realizing ($\Phi \cup \Psi$).

2. a) Prove that there is no formula $\varphi(x)$ which defines \{1\} in the structure $(\mathbb{Q}, <, +)$.

b) Prove or disprove: $\text{Th}(\langle \mathbb{Q}, +, \cdot, <, 0, 1 \rangle)$ has a countable ω-saturated model.

3. a) Let T be a complete theory in a countable language. Assume that there is some complete, non-principal type in one variable consistent with T. Prove that there are infinitely many complete types in one variable consistent with T.

b) Let L be the language whose only non-logical symbol is the binary relation symbol \prec. An L-structure \mathcal{A} is a linear order provided $\prec^\mathcal{A}$ is a linear order of A. Prove that there is some infinite linear order \mathcal{A} such that every L-sentence true on \mathcal{A} is also true on some finite linear order.
4. a) Let $A \subseteq \omega$ be an infinite r.e. set. Prove that there is some infinite recursive set $B \subseteq A$.

b) Let L be the language for arithmetic on the natural numbers, that is, $L^\text{nl} = \{+, \cdot, <, 0, s\}$. Let $A = \{[\sigma] : \models \sigma\}$. Prove that A is an m-complete r.e. set.

5. a) Let $A = \{e \in \omega : W_e = \emptyset\}$ and let $B = \{e \in \omega : W_e = \omega\}$. Prove that A and B are recursively inseparable, that is there is no recursive $C \subseteq \omega$ such that $A \subseteq C$ and $(B \cap C) = \emptyset$.

b) Prove that there is some $B \subseteq \omega$ such that $A \leq_m B$ for every arithmetic set $A \subseteq \omega$.

6. a) Define a partial recursive function g of one argument which cannot be extended to a total recursive function, i.e., there is no total recursive $f : \omega \rightarrow \omega$ such that $f(n) = g(n)$ whenever $g(n) \downarrow$.

b) Prove that there are infinitely many $e \in \omega$ such that $\{e\}(e+1) = 2e$.

1. a) Let L be a countable language containing at least the binary relation symbol E. Let T be a theory of L such that in every model \mathfrak{A} of T, $E^\mathfrak{A}$ is an equivalence relation on A. Let $\varphi(x) \in Fm_L$. Assume that no model \mathfrak{A} of T contains an element satisfying φ whose $E^\mathfrak{A}$-class is infinite. Prove that there is some $n \in \omega$ such that no model \mathfrak{A} of T contains an element satisfying φ whose $E^\mathfrak{A}$-class has $> n$ elements.

b) Let $\mathfrak{A} = (\omega, +, \cdot)$ and let \mathfrak{B} be a proper elementary extension of \mathfrak{A}. Prove that there are infinitely many primes in $(B \setminus \omega)$. [An element b of B is prime if it cannot be expressed in \mathfrak{B} as the product of two elements of B each of which is different than b]

2. a) Let $L^{nl} = \{ E \}$ where E is a binary relation symbol. Let \mathfrak{A} be the L-structure such that $E^\mathfrak{A}$ is an equivalence relation on A with exactly one n-element equivalence class for every positive integer n and with no infinite equivalence classes. Let \mathfrak{B} be a countable elementary extension of \mathfrak{A}. Prove that $tp_{\mathfrak{B}}(b_1) = tp_{\mathfrak{B}}(b_2)$ for all $b_1, b_2 \in (B \setminus A)$.

b) Let $L = (L_1 \cap L_2)$ and assume that $(L_i \setminus L)$ contains just constant symbols, for $i = 1, 2$. Let T be a complete theory of L and let T_i be a theory of L_i for $i = 1, 2$. Assume that some model of T can be expanded to a model of T_1, and also that some model of T can be expanded to a model of T_2. Prove that there is some model \mathfrak{A} of T such that \mathfrak{A} can be expanded to a model \mathfrak{A}_1 of T_1 and \mathfrak{A} can also be expanded to a model \mathfrak{A}_2 of T_2.

1
3. a) Let L be a countable language containing at least the binary relation symbol E. Let T be a theory of L such that $T \models \forall x \forall y (Exy \rightarrow Eyx)$.

If $\mathfrak{A} \models T$ and $a, a^* \in A$ with $a \neq a^*$ we say that a, a^* are connected if either $E^\mathfrak{A}(a, a^*)$ holds or there are $a_1, \ldots, a_n \in A$ for some positive integer n such that

$$E^\mathfrak{A}(a, a_1), E^\mathfrak{A}(a_i, a_{i+1}) \text{ for all } 1 \leq i < n, \text{ and } E^\mathfrak{A}(a_n, a^*)$$

all hold. Assume that in every model of T there is a pair of distinct elements that is not connected. Prove that there is some $\psi(x, y) \in FM_L$ consistent with T such that for every $\mathfrak{A} \models T$ and every $a, a^* \in A$, if $\mathfrak{A}_a \models \psi(\bar{a}, \bar{a}^*)$ then $a \neq a^*$ and a, a^* are not connected.

b) Let T be a complete theory in a countable language L. Let \mathfrak{A} be a prime model of T and let $\Phi(x)$ be a complete type of L. Assume that Φ is realized by exactly two elements in \mathfrak{A}. Prove that Φ is realized by exactly two elements in every model of T.

4. a) Let $R \subseteq \omega \times \omega$ be r.e. and assume that $\bigcup_{k \in \omega} R_k$ is recursive. Prove that there is some recursive $S \subseteq \omega \times \omega$ such that $S_k \subseteq R_k$ for all $k \in \omega$ and $\bigcup_{k \in \omega} S_k = \bigcup_{k \in \omega} R_k$.

b) A total function $f : \omega \rightarrow \omega$ is monotone iff for all $m, n \in \omega$, if $m \leq n$ then $f(m) \leq f(n)$. Let f be a recursive monotone function. Prove that the range of f is recursive. [Warning: f need not be strictly increasing]

5. a) Give an example of a theory T which is undecidable but not essentially undecidable. [You must prove both assertions about T]

b) Prove that there are r.e. sets $A, B \subseteq \omega$ such that $(A \cap B) = \emptyset$ but there is no recursive $C \subseteq \omega$ such that $A \subseteq C$ and $(B \cap C) = \emptyset$.

6. a) Prove that $\{e : 2 \in W_e\} \equiv_m \{e : 3 \in W_e\}$.

b) Let $I = \{e \in \omega : W_e = \{3\}\}$. Determine some $n \in \omega$ such that either $I \in \Sigma_n$ or $I \in \Pi_n$. [You need not prove your choice of n is minimal]
1. a) Let T be a theory of a language L. Assume that there is some $\theta \in S_{nL}$, such that for every model \mathfrak{A} of T, \mathfrak{A} is infinite iff $\mathfrak{A} \models \theta$. Prove that there is some $n \in \omega$ such that every finite model of T has at most n elements.

b) Prove that $(\mathbb{Q}, +, \cdot, 0, 1)$ is a prime model of its complete theory.

2. a) Let $\mathfrak{M} = (\omega, +, \cdot, <, 0, s)$ be the standard model for arithmetic on ω and let \mathfrak{B} be some fixed proper elementary extension of \mathfrak{M}. Let $\varphi(x) \in Fm_L$ and assume that $\varphi^{\mathfrak{M}} = \varphi^{\mathfrak{B}}$. Prove that $\varphi^{\mathfrak{M}}$ is finite.

b) Let $L^{nd} = \{E\}$ where E is a binary relation symbol. An L-structure \mathfrak{A} is a graph provided $\mathfrak{A} \models \forall x \forall y (Exy \rightarrow Eyx)$. A graph \mathfrak{A} is connected iff for all $a, a^* \in A$ with $a \neq a^*$ there are $a_1, \ldots, a_n \in A$ for some $n \in \omega$ such that $E^\mathfrak{A}(a, a_1), E^\mathfrak{A}(a_i, a_{i+1})$ for all $1 \leq i < n$, and $E^\mathfrak{A}(a_n, a^*)$ all hold. Let T be an L-theory such that every connected graph is a model of T. Prove that there is some graph which is a model of T but is not connected.

3. a) Let T be a complete theory in a countable language L. Assume that for every $\varphi(x) \in Fm_L$ consistent with T there is some $\psi(x) \in Fm_L$ such that both $(\varphi \land \psi)$ and $(\varphi \land \neg \psi)$ are consistent with T. Prove that T does not have a prime model.
b) Let T be a complete theory in a countable language L. Let $\mathfrak{A} \models T$ be countable and assume that \mathfrak{A} is isomorphic to each of its countable elementary extensions. Prove that T has a countable ω-saturated model and that \mathfrak{A} itself is ω-saturated.

4. a) Let L be a language with just finitely many non-logical symbols, including at least the unary function symbol s and the constant 0. Let T be a theory of L such that every recursive relation is representable in T. Prove that T is undecidable.

b) Let $A = \{[\sigma] \in \mathcal{S} : \sigma$ is a Σ-sentence and $\mathfrak{N} \models \sigma\}$, where \mathfrak{N} is the usual model for arithmetic on ω. Prove that A is not Π_1.

5. a) Let $R \subseteq \omega \times \omega$ be r.e. Assume that $R_k \neq \emptyset$ for all $k \in \omega$, $\bigcup_{k \in \omega} R_k = \omega$, and for all $k, l \in \omega$ either $R_k = R_l$ or $R_k \cap R_l = \emptyset$. Assume further that there is some recursive $C \subseteq \omega$ such that for all $k \in \omega$, $|R_k \cap C| = 1$. Prove that R is recursive.

b) Let $A = \{e \in \omega : W_e$ is either finite or cofinite}. Find an n so that $A \in \Delta_n$. [You need not prove your n is the least possible]

6. a) Let $A, B \subseteq \omega$ be recursively inseparable r.e. sets (so $A \cap B = \emptyset$ and there is no recursive set A^* with $A \subseteq A^*$ and $A^* \cap B = \emptyset$.) Assume that $A \leq_m C$ where $C \subseteq \omega$. Prove that there is some infinite r.e. set $D \subseteq \omega$ such that $C \cap D = \emptyset$.

b) Let $I = \{e \in \omega : |W_e| = 1\}$. Prove that every r.e. set is many-one reducible to I.
1. a) Prove or disprove: \((\mathbb{Z}, +)\) has a proper elementary substructure.

b) Assume that \(\mathfrak{A}\) and \(\mathfrak{B}\) are \(L\)-structures and \(\mathfrak{A} \equiv \mathfrak{B}\). Prove that there is some \(\mathfrak{C}\) such that both \(\mathfrak{A}\) and \(\mathfrak{B}\) can be elementarily embedded in \(\mathfrak{C}\).

2. a) Let \(L\) be a countable language containing (at least) the binary relation symbol \(E\). Let \(T\) be a complete \(\omega\)-categorical \(L\)-theory, let \(\mathfrak{A}\) be a countable model of \(T\), and assume that \(E^\mathfrak{A}\) is an equivalence relation on \(A\). Prove that there is some \(n \in \omega\) such that for every \(a \in A\) the \(E^\mathfrak{A}\)-class of \(a\) is either infinite or has fewer than \(n\) elements.

b) Let \(T\) be a complete theory in a countable language \(L\) and let \(\varphi(x)\) be a complete \(L\)-type. Assume that \(T\) has some model which contains exactly one element realizing \(\varphi\) and also some model which contains exactly two elements realizing \(\varphi\). Prove that \(T\) has a model omitting \(\varphi\).

3. a) Let \(L^{\omega} = \{c_n : n \in \omega\}\). Let \(\mathfrak{A}\) be an \(L\)-structure such that \(c_n^{\mathfrak{A}} \neq c_m^{\mathfrak{A}}\) for all \(n \neq m\) and such that there is exactly one element \(a^* \in A\) such that \(a^* \neq c_n^{\mathfrak{A}}\) for all \(n \in \omega\). Prove that there is no formula \(\varphi(x)\) of \(L\) such that \(\varphi^{\mathfrak{A}} = \{a^*\}\).

b) Let \(\mathfrak{A}\) be a countable \(\omega\)-saturated structure for a countable language \(L\). Let \(a_0 \in A\) be such that \(h(a_0) = a_0\) for every automorphism \(h\) of \(\mathfrak{A}\). Prove that there is some formula \(\varphi(x)\) of \(L\) such that \(\varphi^{\mathfrak{A}} = \{a_0\}\).
4. a) Let T be a recursively axiomatizable theory true on \mathfrak{N}, the standard model for arithmetic on the natural numbers. Let $X \subseteq \omega$ be r.e. but not recursive, and assume that $X = \varphi^\mathfrak{N}$ for some Σ-formula $\varphi(x)$. Prove that there is some $\mathfrak{B} \models T$ such that $\mathfrak{B} \models \varphi(\bar{n})$ for some $n \in (\omega \setminus X)$.

b) Let $R \subseteq (\omega \times \omega)$ be r.e. Assume the R_n's are infinite and pairwise disjoint. Prove that there is some recursive $C \subseteq \omega$ such that $|R_n \cap C| = 1$ for all $n \in \omega$.

5. a) Let $L^{nl} = \emptyset$. Give an example of a theory T of L which is undecidable but all its complete extensions (in L) are decidable.

b) Let T be a recursively axiomatizable theory in a language L with just finitely many non-logical symbols. Assume that T has just finitely many complete extensions (in L). Prove that T is decidable.

6. a) Recall that
$$F I N = \{e : W_e \text{ is finite}\} \text{ and } I N F = \{e : W_e \text{ is infinite}\}.$$ Prove that $F I N \leq_T I N F$ but $F I N \not\leq_m I N F$.

b) Recall that $R E C = \{e : W_e \text{ is recursive}\}$. Prove that $R E C$ is arithmetic, that is, that $R E C$ is in Σ_n or Π_n for some $n \in \omega$. Although you should try to make n as small as possible, you do not need to prove your choice of n is minimal.
1. a) Let a theory T and sentences σ_n of a language L be given. Assume that $T \models (\sigma_n \rightarrow \sigma_{n+1})$ for all $n \in \omega$. Assume further that for every $\mathfrak{A} \models T$ there is some $n \in \omega$ such that $\mathfrak{A} \models \sigma_n$. Prove that there is some $n_0 \in \omega$ such that $T \models (\sigma_{n_0+1} \rightarrow \sigma_{n_0})$. [In fact, $T \models (\sigma_m \rightarrow \sigma_{n_0})$ will hold for all $m > n_0$.]

b) Let L_0 be the language containing just the binary relation symbol $<$, let L be a language containing L_0, and let T be a theory of L. Assume that $(\omega, <)$ embeds into the L_0-reduct of some model of T. Prove that $(\mathbb{Q}, <)$ can be embedded into the L_0-reduct of some model of T.

2. a) Let $\mathfrak{A} = (\omega, +, \cdot, <, 0, s)$. In \mathfrak{A} the set of primes is definable by the following formula $\varphi(x)$:

$$
(s0 < x) \land \forall y \exists z (x = y \cdot z \rightarrow (x = y) \lor (x = z))
$$

Let \mathfrak{B} be any proper elementary extension of \mathfrak{A}. Prove that \mathfrak{B} contains a new prime, that is, some element b satisfying $\varphi(x)$ which is not in ω.

b) Let L be the language whose only non-logical symbol is the binary relation E and let T be the L-theory axiomatized by sentences saying that E is an equivalence relation on the universe with infinitely many equivalence classes, each of which is infinite. Prove that T is model complete, that is, for all models \mathfrak{A} and \mathfrak{B} of T, if $\mathfrak{A} \subseteq \mathfrak{B}$ then $\mathfrak{A} \prec \mathfrak{B}$.

1
3. a) Let T be a complete theory in a countable language L. Assume that there is some non-principal complete type in one variable consistent with T. Prove that every model of T realizes (at least) three different complete types in one variable. [In fact each model of T will realize infinitely many, but you need not prove this.]

b) Let \mathfrak{a} be an ω-saturated L-structure and let $\varphi(x, y)$ be an L-formula. Assume that for every $a \in A$ the set $\varphi^a(x, a)$ is finite. Prove that there is some $n \in \omega$ such that for every $a \in A$ the set $\varphi^a(x, a)$ contains at most n elements.

4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. and that R_n is infinite for every $n \in \omega$. Let $g : \omega \rightarrow \omega$ be any recursive function. Prove that there is some recursive function $f : \omega \rightarrow \omega$ such that $f(n) \in R_n$ and $g(n) < f(n)$ for all $n \in \omega$.

b) Let L be the language whose only non-logical symbol is the binary relation E and let T_0 be the L-theory axiomatized by sentences stating that E is an equivalence relation on the universe. Prove that T has a complete undecidable extension.

5. a) Define $f : \omega \rightarrow \omega$ by

$$f(n) = (\mu k)[\{n\} = \{k\}].$$

Prove that f is not recursive.

b) Assume that $B \subseteq \omega$ is such that $A \leq_m B$ for all r.e. sets A. Prove that B contains some infinite r.e. subset.

6. a) Let $A_n \subseteq \omega$ be given for all $n \in \omega$. Prove that there is some $B \subseteq \omega$ such that $A_n \leq_T B$ holds for all $n \in \omega$.

b) Let $A = \{e \in \omega : \{e\}(5) = 7\}$. Prove that $A \equiv_m K$. [Recall that $K = \{e : \{e\}(e) \downarrow\}]$
1. a) Let T be a theory of L, let $\Phi(x)$ and $\Psi(x)$ be types of L. Assume that for every $a \models T$ and all $a \in A$, a realizes Φ iff a does not realize Ψ. Prove that there is some $\varphi(x) \in Fm_L$ such that $\Phi^a = \varphi^a$ for every model a of T.

b) Let L be a language containing (at least) the binary relation symbol E. Let a be an ω-saturated L-structure in which E^a is an equivalence relation on A with exactly one infinite equivalence class. Prove that there is some $n \in \omega$ such that every finite E^a-class has at most n elements.

2. a) Prove or disprove: $(\omega, +)$ has a proper elementary substructure.

b) Let T be an L-theory. Let a be an L-structure which cannot be embedded in any model of T. Prove that there is an existential sentence θ of L (that is, θ has the form $\exists x_1 \ldots \exists x_n \alpha$ where α is an open formula of L) such that $a \models \theta$ but $T \models \neg \theta$.

3. a) Prove that the structure $(\omega, |)$ has uncountably many automorphisms (where $n|k$ iff $k = n \cdot l$ for some $l \in \omega$).

b) Let T be a complete theory in a countable language L and let $\Phi(x)$ be an L-type which is omitted on some model of T. Assume further that any two countable models of T omitting Φ are isomorphic. Prove that every countable model of T omitting Φ is prime.

[Warning: You cannot assume that T has a prime model]
4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. and that $\cup_{k \in \omega} R_k = \omega$. Prove that there is some recursive $S \subseteq R$ such that $\cup_{k \in \omega} S_k = \omega$.

b) Let L be a language with only finitely many non-logical symbols and let $L' = L \cup \{c\}$ where c is a constant symbol not in L. Let T' be a finitely axiomatizable undecidable theory of L' and let $T = T' \cap S_{n_L}$. Prove that T is also undecidable.

5. Recall that subsets A and B of ω are called recursively inseparable if there is no recursive $C \subseteq \omega$ such that $A \subseteq C$ and $B \cap C = \emptyset$.

a) Prove that there are disjoint r.e. subsets A and B of ω which are recursively inseparable.

b) Assume that A and B are disjoint r.e. subsets of ω which are recursively inseparable. Prove that $\omega \setminus (A \cup B)$ is infinite.

6. a) Let $A = \{[\sigma]: \sigma \in S_{n_L} \text{ and } Q \vdash \sigma\}$ (where L is the usual language for arithmetic on the natural numbers). Prove that A is an m-complete r.e. set.

b) Prove that there is some $A \subseteq \omega$ such that $A \in \Sigma_3$ but $A \notin \Pi_3$.
1. a) Let T be a theory of a language L, and let $\varphi_i(x)$ be formulas of L for all $i \in \omega$. Assume that for all $i \in \omega$

$$T \models \forall x(\varphi_{i+1}(x) \rightarrow \varphi_i(x)) \quad \text{and} \quad T \models \neg \forall x(\varphi_i(x) \rightarrow \varphi_{i+1}(x)).$$

Prove that T has a model \mathfrak{a} with an element a such that $\mathfrak{a} \models \varphi_i(a)$ for all $i \in \omega$.

b) Let T be a complete theory in a countable language L, and assume that for each $n > 0$ there are just countably many complete types in n free variables consistent with T. Prove that T has a prime model.

2. a) Prove or disprove: $(\mathbb{Z}, <)$ has a proper elementary submodel.

b) Does $Th((\mathbb{Z}, +, 1))$ have a countable ω-saturated model? Prove your answer.

3. a) Let \mathfrak{a} be the unique countable model of a a complete ω-categorical theory T in a countable language L, and let $\varphi(x, y) \in Fm_L$. Prove that there is some $n \in \omega$ such that for every $a \in A$, either $|\varphi^a(x, a)| < n$ or $\varphi^a(x, a)$ is infinite.

b) Let T be a complete theory in a countable language L having infinite models. Assume that for every $\varphi(x) \in Fm_L$ and for every $\mathfrak{a} \models T$, φ^a is either finite or cofinite (meaning its complement is finite). Prove that there is exactly one non-principal complete type $\Phi(x)$ in the single variable x consistent with T.

4. a) Let T be a consistent recursively axiomatized theory containing the axioms for Q. Prove that there is a formula $\varphi(x)$ such that $T \models \varphi(n)$ for all $n \in \omega$ but $T \not\models \forall x \varphi(x)$.

b) Let $R \subseteq \omega \times \omega$ be r.e., and assume that $|\omega \setminus R_k| = 2$ for every $k \in \omega$. Prove that R is recursive.

5. a) Assume that $A \subseteq \omega$ is such that
\[
\{e : W_e = 0\} \subseteq A \quad \text{and} \quad \{e : W_e = \omega\} \cap A = \emptyset.
\]
Prove that A is not recursive.

b) Assume that $A \subseteq \omega$ is such that $K \preceq_m A$. Prove that A contains an infinite r.e. subset.

[Recall that $K = \{e : e \in W_e\}$]

6. a) Let T be a consistent, decidable theory in a language L with just finitely many non-logical symbols. Prove that $T \subseteq T^*$ for some complete, decidable theory T^* of L.

[Hint: Let $\{\sigma_n : n \in \omega\}$ be a recursive list of all sentences of L ...]

b) Prove that $TOT \equiv_m INF$.

[Recall that $TOT = \{e : W_e = \omega\}$ and $INF = \{e : W_e \text{ is infinite}\}$]
1. a) Assume that $L \subseteq L'$, let T' be an L'-theory and let \mathfrak{a} be an L-structure. Assume that there is no $\mathfrak{a}' \models T'$ such that \mathfrak{a} is elementarily equivalent to the L-reduct of \mathfrak{a}'. Prove that there is some $\sigma \in \mathcal{S}_{nL}$ such that $\mathfrak{a} \models \sigma$ and $T' \models \neg \sigma$.

b) Let $L^u = \{ E \}$ where E is a binary relation symbol. Let K be the class of all L-structures \mathfrak{a} for which $E^\mathfrak{a}$ is an equivalence relation on A with at least one finite $E^\mathfrak{a}$-class. Prove that there is no theory T of L such that $K = \text{Mod}(T)$.

[Hint: Assume that $K \subseteq \text{Mod}(T)$ and find $\mathfrak{a} \models T$ such that $\mathfrak{a} \notin K$.]

2. a) Let L contain at least the binary relation symbol E, and let \mathfrak{a} be an infinite ω-saturated L-structure such that $E^\mathfrak{a}$ is an equivalence relation on A. Assume that whenever $\mathfrak{a} \prec \mathfrak{b}$ and $a \in A$ then

\[\{ b \in B : E^\mathfrak{b}(a, b) \text{ holds} \} \subseteq A. \]

Prove that there is some $n_0 \in \omega$ such that every $E^\mathfrak{a}$-class has at most n_0 elements.

b) Let L be a countable language containing at least the unary relation symbols P_n for $n \in \omega$, and let T be a theory of L. Assume that T has a model \mathfrak{a} such that for every $\varphi(x) \in Fm_L$ if $\varphi^\mathfrak{a} \neq \emptyset$ then there is some $k \in \omega$ such that $(\varphi^\mathfrak{a} \cap P_k^\mathfrak{a}) \neq \emptyset$. Prove that T has a model \mathfrak{b} such that $B = \bigcup_{k \in \omega} P_k^\mathfrak{b}$.

3. Let T be a complete theory in a countable language L. Recall that a complete type $\Phi(x)$ consistent with T is said to be non-principal provided it does not contain a complete formula $\varphi(x)$.
a) Assume that $\Phi(x)$ is a non-principal complete type consistent with T. Prove that T has some model which contains infinitely many elements realizing $\Phi(x)$.

b) Assume that there are no non-principal complete types $\Phi(x)$ in the single free variable x consistent with T. Prove that there are only finitely many complete types in the single free variable x consistent with T.

4. a) Let A and B be r.e. subsets of ω. Assume that $(A \cup B)$ is recursive. Prove that there are recursive sets $A' \subseteq A$ and $B' \subseteq B$ such that $(A \cup B) = (A' \cup B')$.

b) Let A be an infinite r.e. subset of ω. Prove that there is an infinite recursive set B with $B \subseteq A$.

5. a) Give a theory T in a language L with just finitely many non-logical symbols which has an r.e. set of axioms but is such that

$$\{ n \in \omega : T \text{ has a model } \mathfrak{A} \text{ with } |\mathfrak{A}| = n \}$$

is not recursive. Prove that it has these properties.

b) Assume that $R \subseteq \omega \times \omega$ is r.e. Let $A = \{ k \in \omega : R_k \text{ is infinite} \}$. Prove that A is Π_2.

6. a) Recall that $K = \{ e \in \omega : e \in W_e \}$ and that $\text{INF} = \{ e \in \omega : W_e \text{ is infinite} \}$. Prove that $K \trianglelefteq_m \text{INF}$.

b) Let \mathcal{F} be a non-empty set of partial recursive functions of one argument and let $I = \{ e \in \omega : \{ e \} \in \mathcal{F} \}$. Prove that $I \not\subseteq_m (\omega \setminus I)$.

1. a) Let T be a theory of a language L containing (at least) the binary relation symbol E and so that for every $\mathfrak{a} \models T$, $E^\mathfrak{a}$ is an equivalence relation on A. Assume further that whenever $\mathfrak{a} \models T$, $\mathfrak{a} \prec \mathfrak{b}$, $a \in A$ and $b \in (B \setminus A)$ then $\mathfrak{b}_B \models \neg E(\bar{a}, \bar{b})$. Prove that there is some $n_0 \in \omega$ such that for every $\mathfrak{a} \models T$ all $E^\mathfrak{a}$-classes have $\leq n_0$ elements.

b) Let the only non-logical symbol of L be the binary relation symbol E. Let \mathfrak{a} be the L-structure in which $E^\mathfrak{a}$ is an equivalence relation on A with infinitely many 2 element classes and infinitely many 3 element classes and no other classes. Let $\mathfrak{a} \subseteq \mathfrak{b}$ where \mathfrak{b} adds exactly one more 2 element class and nothing else. Prove that $\mathfrak{a} \prec \mathfrak{b}$. [Hint: why are \mathfrak{a} and \mathfrak{b} elementarily equivalent?]

2. a) Is the structure $(\mathbb{R}, +, \cdot, 0, 1)$ ω-saturated? Explain.

b) Assume that the L-structure \mathfrak{a} realizes exactly three different complete L-types in one free variable. Prive that the same is true of every model of $Th(\mathfrak{a})$.

3. a) Let T be a complete theory in a countable language L, and let $\Phi(x)$ be an L-type. Assume that in every model of T the type Φ is realized by at most 2 elements. Prove that there is a formula $\varphi(x)$ of L such that for every $\mathfrak{a} \models T$, $\Phi^\mathfrak{a} = \varphi^\mathfrak{a}$.
b) Let T be a complete theory in a countable language L which has no prime model. Let $\Phi(x)$ be an L-type omitted on some model of T. Prove that T has at least two nonisomorphic countable models omitting Φ.

4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. and that R_k is infinite for all $k \in \omega$. Prove that there is a strictly increasing recursive function f on ω such that $f(k) \in R_k$ for all $k \in \omega$.

b) Prove that there is a function $g : \omega \to \omega$ such that for every recursive function f on ω there is some $n_0 \in \omega$ so that for all $n \geq n_0$ we have $f(n) < g(n)$.

5. a) Assume that $R \subseteq \omega \times \omega$ is r.e. but not recursive and that $\bigcup_{k \in \omega} R_k$ is recursive. Prove that $R_k \cap R_l \neq \emptyset$ for some $k \neq l$.

b) Let f_1 and f_2 be partial recursive functions and assume that $f_1 \neq f_2$. Let $B_1 = \{ e : \{ e \} = f_1 \}$ and let $B_2 = \{ e : \{ e \} = f_2 \}$. Prove that there is no recursive set A such that $B_1 \subseteq A$ and $B_2 \cap A = \emptyset$.

6. a) Prove that $\{ e : 0 \in W_e \}$ is an m-complete r.e. set.

b) Let $\text{REC} = \{ e : W_e \text{ is recursive } \}$. Use Post's Theorem to prove that REC is r.e. in \emptyset'.
1. a) Let a theory T and sentences σ_n for $n \in \omega$ be given. Assume that $T \models (\sigma_n \rightarrow \sigma_{n+1})$ and $T \not\models (\sigma_{n+1} \rightarrow \sigma_n)$ for all $n \in \omega$. Prove that T has a model \mathfrak{A} such that $\mathfrak{A} \models \neg \sigma_n$ for all $n \in \omega$.

b) Let L be a language containing at least the binary relation symbol E, and let \mathfrak{A} be an L-structure so that $E^\mathfrak{A}$ is an equivalence relation on A. Assume that for every elementary extension \mathfrak{B} of \mathfrak{A} and every $b \in B$ there is some $a \in A$ such that $E^\mathfrak{A}(a, b)$ holds. Prove that $E^\mathfrak{A}$ has just finitely many equivalence classes.

2. a) Prove that (Q, \leq) is isomorphically embeddable in some $\mathfrak{B} \equiv (\omega, \leq)$.

b) Prove or disprove: $(\mathbb{Z}, +)$ has a proper elementary submodel.

3. a) Let L be a countable language containing at least the binary relation symbol E, and let T be a theory of L such that for every model \mathfrak{A} of T, $E^\mathfrak{A}$ is an equivalence relation on A. Assume that for every model \mathfrak{A} of T some $E^\mathfrak{A}$ class is infinite. Prove that there is some formula $\varphi(x)$ of L consistent with T so that whenever \mathfrak{A} is a model of T, $a \in A$ and $\mathfrak{A} \models \varphi(\bar{a})$ then the $E^\mathfrak{A}$-class of a is infinite.

b) Let T be a complete theory in a countable language L, let $\Phi(x)$ and $\Psi(x)$ be L-types, and let \mathfrak{A} be an ω-saturated model of T. Assume that $\Phi^\mathfrak{A} = (A \setminus \Psi^\mathfrak{A})$. Prove that there is some formula $\varphi(x)$ of L such that for every model \mathfrak{B} of T, $\Phi^\mathfrak{B} = \varphi^\mathfrak{B}$.
4. a) Let \(R \subseteq \omega \times \omega \) be r.e. and assume that \(R_k \neq \emptyset \) for all \(k \in \omega \) and that \(R_k \cap R_l = \emptyset \) for all \(k \neq l \). Prove that there is some r.e. \(C \subseteq \omega \) such that \(|R_k \cap C| = 1 \) for all \(k \in \omega \).

b) Let \(X \subseteq \omega \) and a formula \(\varphi(x) \) of the language of arithmetic be given. Assume that \(\varphi \) weakly represents \(X \) in every consistent theory \(T \) containing \(Q \). Prove that \(X \) is recursive.

5. a) Let \(T \) be a recursively axiomatizable theory and assume that \(T \) has just finitely many complete extensions (in the same language). Prove that \(T \) is decidable.

b) Define \(f : \omega \to \omega \) by \(f(e) = \) the least \(d \) such that \(\{d\} = \{e\} \). Prove that \(f \) is not recursive.

6. a) Give an example (with proof) of a set \(X \subseteq \omega \) which is \(\Pi_1 \) but not \(\Sigma_1 \).

b) Prove or disprove: \(\{[\sigma] : \mathbb{N} \models \sigma \} \) is arithmetic.
1. a) Let T and T' be theories of L such that for every L-structure A, $A \models T$ iff $A \not\models T'$. Prove that T is finitely axiomatizable.

b) Prove that every countable linear order can be isomorphically embedded in (\mathbb{Q}, \leq).

2. a) Prove or disprove: $(\mathbb{R} \setminus \{0\}, \leq)$ is an elementary substructure of (\mathbb{R}, \leq).

b) Let T be a complete ω-categorical theory in a countable language L. Prove that there is an integer k such that for every model A of T and every formula $\varphi(x)$ of L with just one free variable, if φ^A has more than k elements then φ^A is infinite.

3. Let T be a complete theory in a countable language L, let A be an ω-saturated model of T, and let $\Phi(x)$ be a type in one free variable consistent with T. Assume that Φ is realized in A by exactly two elements of A. Prove that Φ is realized by exactly two elements in every model of T.

4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. and $\bigcup_{k \in \omega} R_k = \omega$. Prove that there is some recursive $S \subseteq R$ such that $\bigcup_{k \in \omega} S_k = \omega$ and $S_k \cap S_l = \emptyset$ whenever $k \neq l$.

b) Let T be a consistent recursively axiomatizable extension of the theory Q. Find a formula $\varphi(x)$ such that $T \models \varphi(\bar{n})$ for all $n \in \omega$ but $T \not\models \forall x \varphi(x)$. (Be sure to show that the formula you define has this property.)

5. a) Let L be a language with just finitely many non-logical symbols and let $L' = L \cup \{c\}$ where c is a constant symbol not in L. Assume that T' is a finitely axiomatizable essentially undecidable theory of L' and let $T = T' \cap S_{n_L}$. Prove that T is essentially undecidable.

b) Prove that $A = \{e \in \omega : \{e\}(e) = e\}$ is not recursive.

6. An r.e. set $\mathcal{A} \subseteq \omega$ is said to be simple if $(\omega \setminus \mathcal{A})$ is infinite but does not contain an infinite r.e. subset.

a) Prove that the intersection of two simple r.e. sets is simple.

b) Show that $K = \{e : e \in W_e\}$ is not simple.
1. a) Let L be a language containing at least the binary relation symbol E and let T be a theory of L so that in every model \mathfrak{a} of T, $E^\mathfrak{a}$ is an equivalence relation on A. Assume that in every model \mathfrak{a} of T, every $E^\mathfrak{a}$-class is finite. Prove that there is some $n \in \omega$ so that in every model \mathfrak{a} of T, every $E^\mathfrak{a}$-class contains at most n elements.

b) Let Σ_1 and Σ_2 be sets of sentences of L such that there is no sentence θ of L so that $\Sigma_1 \models \theta$ and $\Sigma_2 \models \neg \theta$. Prove that $(\Sigma_1 \cup \Sigma_2)$ has a model.

2. a) Let \mathfrak{a} be an L-structure and let $\varphi(x)$ be a formula of L. Prove that $\varphi^\mathfrak{a}$ is finite iff there is no \mathfrak{b} so that $\mathfrak{a} \prec \mathfrak{b}$ and $\varphi^\mathfrak{a} \neq \varphi^\mathfrak{b}$.

b) Let $\{\varphi_i(x) : i \in \omega\}$ be an infinite set of L-formulas and let \mathfrak{a} be an ω-saturated L-structure. Assume that for every $a \in A$ there is some $i \in \omega$ such that $\mathfrak{a}_A \models \varphi_i(\bar{a})$. Prove that for every L-structure \mathfrak{b} elementarily equivalent to \mathfrak{a}, for every $b \in B$ there is an $i \in \omega$ such that $\mathfrak{b}_B \models \varphi_i(\bar{b})$.

3. a) Let T be a complete theory in a countable language L that has an infinite model. Prove that T is ω-categorical iff all models of T realize precisely the same n-types for each $n \in \omega$.

b) Let L be a countable language and let \mathfrak{a} be an infinite, countable, saturated L-structure. Prove that there is a proper elementary extension \mathfrak{b} of \mathfrak{a} that is isomorphic to \mathfrak{a}.
4. a) Let T be a theory in a language $L \supseteq \{S, 0\}$ that contains only finitely many non-logical symbols. Assume that every recursive relation is representable in T. Prove that T is undecidable.

b) Let L be a countable language and let $L' = L \cup \{c\}$, where c is a constant symbol not in L. Let Σ be a set of sentences of L, let $T = \text{Cn}_L(\Sigma)$ and let $T' = \text{Cn}_{L'}(\Sigma)$. Prove that T is undecidable iff T' is undecidable.

5. a) Let $E \subseteq \omega \times \omega$ be r.e. Assume that E is an equivalence relation on ω and assume that $C \subseteq \omega$ is an r.e. set that contains exactly one element from each E-class. Prove that E is recursive.

b) Let $A \subseteq \omega$ be non-empty. Carefully prove that A is the domain of some partial recursive function iff A is the range of some total recursive function.

6. a) Let A be a non-empty, proper subset of ω. Assume that A is recursive. Prove that there are numbers $a \in A$ and $b \in (\omega \setminus A)$ such that $W_a = W_b$.

b) Let X be a non-empty subset of ω. Assume that X is r.e. Let $I = \{e \in \omega : W_e = X\}$. Prove that every r.e. subset A of ω is many-one reducible to I.
1. a) Let T be a theory of L and let σ be a sentence of L. Assume that for every model \mathfrak{A} of T, $\mathfrak{A} \models \sigma$ iff A is finite. Prove that there is some $n \in \omega$ such that every model of T with at least n elements is infinite.

b) Let \mathfrak{A} be a proper elementary extension of $(\omega, <)$. Prove that there is an infinite sequence $\{a_n\}_{n \in \omega}$ of elements of A such that $a_{n+1} < a_n$ holds for all $n \in \omega$.

2. a) Let \mathfrak{A} be an infinite L-structure. Assume that for every formula $\varphi(x)$ of L, either φ^2 is finite or $(-\varphi)^2$ is finite. Prove that there is exactly one complete 1-type $\Gamma(x)$ consistent with T that can be realized by infinitely many elements in some model of T.

b) Let T be a complete theory in a countable language L and let $\Phi(x)$ be a type consistent with T. Assume that Φ is omitted in some model of T. Prove that there is another model of T in which Φ is realized by infinitely many elements.

3. a) Let T be a complete theory in the language $L = \{+, \cdot, <, S, 0\}$ such that $Q \subseteq T$ but $(\omega, +, \cdot, <, S, 0) \models T$. Prove that there is some formula $\varphi(x)$ of L such that $T \models \exists x \varphi(x)$ but $T \models \neg \varphi(n)$ for every $n \in \omega$.

b) Let \mathfrak{A} be the countable model of an ω-categorical theory in a countable language L. Prove that \mathfrak{A} has a non-trivial automorphism.
4. a) Prove that every infinite r.e. $A \subseteq \omega$ contains an infinite recursive subset.

 b) Let $R \subseteq \omega \times \omega$ be r.e. and satisfy the following conditions:

 $\bigcup_{k \in \omega} R_k = \omega$ and $R_k \cap R_l = \emptyset$ whenever $k \neq l$.

 Prove that R is recursive. (Recall that $R_k = \{ l : R(k, l) \text{ holds} \}$).

5. a) Let $X \subseteq \omega$ be r.e. but not recursive. Let $\varphi(x)$ be a Σ-formula in the language $L = \{ +, \cdot, <, S, 0 \}$ that defines X in $(\omega, +, \cdot, <, S, 0)$. Prove that there is some consistent theory $T \supseteq Q$ such that $T \vdash \varphi(\bar{n})$ for some $n \notin X$.

 b) Prove that there is a partial recursive function f that cannot be extended to a total recursive function (i.e., there is no total recursive function g such that $g(k) = f(k)$ whenever $f(k)$ is defined).

6. a) Prove that there is some $\epsilon \in \omega$ such that $\{\epsilon\}(2\epsilon) = 3\epsilon + 1$.

 b) Let $A = \{ [\sigma] : \sigma \text{ is a sentence of } L = \{ +, \cdot, <, S, 0 \} \text{ and } \models \sigma \}$. Prove that A is a complete r.e. set.
1. a) Let L be a countable language containing at least the binary relation symbol E, and let T be a theory of L so that E^A is an equivalence relation on A for every model A of T. Assume that whenever A is a model of T and B is an elementary extension of A then every element of $(B - A)$ has its E^B-class contained in $(B - A)$. Prove that there is some integer n such that in every model A of T every E^A-class has size $< n$.

b) Let T be a consistent theory in the countable language L and let $\exists \forall^\infty$ and \forall^\exists be types consistent with T. Assume that for every model A of T we have $\exists^A = A - \forall^A$. Prove that there is some formula $\varphi(x)$ such that $\exists^A = \varphi^A$ for every model A of T.

2. Let T be a complete theory in a countable language L and let $\exists^\infty(x)$ be a complete type of T. Assume that T has models A and B so that $|\exists^A| = 1$ and $|\exists^B| = 2$.

a) Prove that T has a model omitting \exists^∞.

b) Prove that T has a model C so that \exists^C is infinite.

3. a) Prove that $(\omega, +)$ has no proper elementary substructures.

b) Let T be a complete ω-categorical theory in a countable language. Prove that there is an integer n such that for every formula $\varphi(x)$ and every model A of T, if φ^A is finite then $|\varphi^A| < n$.
4. a) For any $R \subseteq \omega \times \omega$ we define $R_k = \{ l : R(k,l) \text{ holds} \}$. Assume that R is r.e. and $\bigcup_{k \in \omega} R_k = \omega$. Prove that there is some recursive $S \subseteq R$ such that $\bigcup_{k \in \omega} S_k = \omega$ and further $S_k \cap S_{k+1} = \emptyset$ whenever $k \neq l$.

b) Let A, $B \subseteq \omega$ and assume that B is r.e. but not recursive and that $B \leq_m A$. Prove that A contains an infinite r.e. subset.

5. a) Prove that $\{ e : W_e \neq \omega \} \leq_m \{ e : W_e \text{ is finite} \}$.

b) Let A_n be arbitrary subsets of ω for every n in ω. Prove that there is some $B \subseteq \omega$ such that $A_n \leq_T B$ for every n.

6. a) Prove that $REC = \{ e : W_e \text{ is recursive} \}$ is Σ_3^0.

b) Prove that $A \leq_T \{ \sigma^* : N \models \sigma \}$ for every arithmetic $A \subseteq \omega$, where N is the standard model of arithmetic on the natural numbers.
1. a) Let L be a language containing at least the binary relation symbol E. Let A be an L-structure in which E is interpreted as an equivalence relation on the universe. Assume that every element of every elementary extension of A belongs to the E-class of some element of A. Prove that there are just finitely many E-classes in A.

b) Let L and L' be languages with $L \subseteq L'$. Let T' be an L'-theory, and let A be an L-structure. Assume that there is no model of T' whose L-reduct is elementarily equivalent to A. Prove that there is some L-sentence σ such that $A \not\models \sigma$ and $T' \not\models \neg \sigma$.

2. a) Let T be a complete theory of a language L and let $\bar{\varphi}(x)$ be an L-type. Assume that $\bar{\varphi}$ is realized by at most one element in every model of T. Prove that there is some formula $\varphi(x)$ such that $\bar{\varphi}^A = \varphi^A$ for every model A of T.

b) Let A be the countable model of an ω-categorical theory in a countable language L. Let X be a subset of A fixed by all automorphisms of A (that is, if $a \in X$ then $h(a) \in X$ for every automorphism h of A). Prove that X is definable in A by some L-formula. (You may assume that if $(\bar{A},a) \equiv (\bar{A},b)$ then $(\bar{A},a) \not\equiv (\bar{A},b)$, and also the Ryll-Nardzewski characterization of ω-categorical theories).
3. a) Prove that \(\text{Th}((\mathbb{Z}, +)) \) does not have a countable \(\omega \)-saturated model.

b) Let \(L \) be a countable language containing at least a binary relation symbol \(E \). Let \(T \) be an \(L \)-theory stating (among other things) that \(E \) is an equivalence relation on the universe. Assume that \(T \) has a model \(A \) with the property that every \(L \)-formula \(\varphi(x) \) satisfiable on \(A \) is satisfiable by some element of \(A \) from a finite \(E \)-class. Prove that \(T \) has a model in which all \(E \)-classes are finite.

4. a) Let \(R \) be a binary relation on \(\omega \) which is r.e. but not recursive.
Assume that \(R_k \cap R_{k+1} = \emptyset \) for all \(k \neq 1 \) (where \(R_k = \{ n : R(k,n) \text{ holds}\} \)).
Prove that \(\bigcup_{k \in \omega} R_k \) is not recursive.

b) Let \(A = \{ \sigma : q \vdash \sigma \} \) where \(Q \) is the theory of the language of arithmetic used in undecidability results. Prove that every r.e. set of natural numbers is many-one reducible to \(A \).

5. a) Assume \(X \subseteq \omega \) is such that \(\{ e : W_e = \omega \} \subseteq X \) and \(\{ e : W_e = \emptyset \} \cap X = \emptyset \).
Prove that \(X \) is not recursive.

b) Prove that \(B = \{ e : \{ e \}(2e) = 3 \} \) is a complete r.e. set.

6. a) Assume that \(B \subseteq \omega \) is infinite but contains no infinite r.e. subset.
Assume that \(A \) is r.e. and \(A \preceq^m B \). Prove that \(A \) is recursive.

b) Recall that \(\text{COF} = \{ e : (\omega - W_e) \text{ is finite} \} \). Prove that \(\text{COF} \) is r.e. in \(\emptyset' \).
1. a) Prove that \((\mathbb{Z}, <)\) has no proper elementary submodels.

b) Let \(T\) be a complete theory in a countable language \(L\) containing (at least) a binary relation symbol \(E\) such that in every model of \(T\), \(E\) is interpreted as an equivalence relation on the universe. Assume that in every \(\omega\)-saturated model of \(T\) there is exactly one infinite \(E\)-class. Prove that there is some integer \(n\) such that in every model of \(T\) every \(E\)-class with \(> n\) elements is infinite.

2. a) Let \(T\) be a consistent theory in a countable language \(L\). Assume that for all formulas \(\varphi(x)\) of \(L\) we have
\[
T \not\vdash \forall x \varphi(x) \iff T \not\vdash \varphi(c) \text{ for all constants } c \text{ of } L.
\]
Prove that \(T\) has a model \(A\) such that \(A = \{c^A : c \in L\}\).

b) Let \(A\) be any \(L\)-structure and assume that \(A\) realizes exactly three different complete types. Show that the same is true for every \(L\)-structure \(B\) elementarily equivalent to \(A\).

3. a) Let \(T\) be a complete theory in a countable language \(L\) and let \(A\) be a countable atomic model of \(T\). Assume that \(a\) and \(b\) are elements of \(A\) with the same complete type. Prove that \(A\) has an automorphism \(f\) such that \(f(a) = b\).

b) Let \(T\) be a complete theory in a countable language \(L\). Assume there are only finitely many complete types \(\bar{\Phi}(x)\) in a single variable \(x\) consistent with \(T\). Prove that there are only finitely many formulas \(\varphi(x)\) of \(L\) up to equivalence with respect to \(T\).
4. a) Let A and B be disjoint r.e. sets of natural numbers, and assume neither of them is recursive. Prove that $(A \cup B)$ is not recursive.

b) Prove that any theory T with an r.e. set of axioms also has a recursive set of axioms.

5. a) Let T be a theory in a countable language L and assume that
\[{n \in \omega : T \text{ has a model of cardinality } n}\] is not recursive. Prove that T is undecidable.

b) Let T be a consistent recursively axiomatizable theory in the usual language for arithmetic on the natural numbers. Assume that X is weakly representable in T by $\varphi(x)$ and that X is not recursive. Prove that there is some consistent recursively axiomatizable theory T' containing T such that X is not weakly representable in T' by $\varphi(x)$.

6. a) Prove that there are r.e. subsets A and B of ω which are disjoint but there is no recursive set C with $A \subseteq C$ and $(B \cap C) = \emptyset$.

b) Prove that \[{e : W_e \text{ is infinite}}\] $\leq_m \{e : W_e = \omega \}$.
[Hint: first define a partial recursive function $g(e,x)$ which converges iff \{e\}(y) converges for some $y > x$]
1. a) Let A be an L-structure and let $\varphi(x)$ be a formula of L. Prove that φ^A is finite iff $\varphi^B = \varphi^A$ for every elementary extension B of A.

b) Let T be a complete theory in a countable language L, let A be an ω-saturated model of T, and let $\bar{\Phi}(x)$ and $\bar{\Psi}(x)$ be L types. Assume that $\bar{\Phi}^A = A - \bar{\Phi}^A$. Prove that there is some formula $\varphi(x)$ of L such that $\varphi^A = \varphi^A$.

2. a) Let T be a countable language whose non-logical symbols include the binary relation \prec. Let T be a consistent theory of L such that \prec^A is a linear order of A for every model A of T. Assume that whenever A is a model of T there are a, b in A such that the \prec^A-interval between a and b is infinite. Prove that there is some formula $\varphi(x,y)$ of L consistent with T such that whenever A is a model of T and $A \models \varphi(a,b)$ then the \prec^A-interval between a and b is infinite.

b) Let L and L' be languages with $L \subseteq L'$, let T_1' and T_2' be theories of L' which contain precisely the same sentences of L, and let T be a theory of L. Prove that some model of T can be expanded to a model of T_1' iff some model of T can be expanded to a model of T_2'.

3. a) Let A be any L-structure, let $L' = L(A)$ and let $T' = \text{Th}(A)$. Let B' be an L'-structure which is a model of T'. Assume that B' is an atomic model of T'. Prove that B, the L-reduct of B', is isomorphic to A.

b) Let T be a complete ω-categorical theory in a countable language L. Prove that there is some integer k such that for every formula $\varphi(x)$ of L and every model A of T, if $|\varphi^A| > k$ then φ^A is infinite.
4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. and defines a strict linear order on ω with no last element (so $R(k,k)$ fails for all k). Prove that there is a strictly increasing recursive function f such that $R(f(k), f(k+1))$ holds for all k.

b) Let the non-logical symbols of L be $\{+,-,\cdot,0\}$ and let \mathbb{N} be the standard L-structure for arithmetic on the natural numbers. Prove that there is no listing $\{\varphi_n(x): n \in \omega\}$ of all the formulas of L with x free such that $X = \{n: \mathbb{N} \models \varphi_n(\bar{n})\}$ is recursive.

5. a) Let L have as its only non-logical symbol the binary relation E and let T_0 be the L-theory asserting that E is an equivalence relation on the universe with infinitely many classes. Prove that there is a complete L-theory T which extends T_0 and is undecidable.

b) Let A be a non-empty r.e. subset of ω and define $I = \{e: A = W_e\}$. Prove that every r.e. set B is many-one reducible to I.

6. a) Let L be a language with finitely many non-logical symbols and let $L' = L \cup \{c\}$ where c is an individual constant symbol not in L. Let A' be a strongly undecidable L'-structure and let A be its reduct to L. Prove that $\text{Th}(A)$ is an undecidable L-theory.

b) Let $\text{REC} = \{e: W_e \text{ is recursive}\}$. Prove that REC is r.e. in \emptyset''.
1. a) Let \(L \) be a language whose non-logical symbols include the binary relation \(E \). Let \(T \) be a theory of \(L \) such that \(E^A \) is an equivalence relation on \(A \) for every model \(A \) of \(T \). Assume that in every model \(A \) of \(T \) there is exactly one infinite \(E^A \)-class. Prove that there is some \(n \) in \(\omega \) such that in every model \(A \) of \(T \) all finite \(E^A \)-classes have at most \(n \) elements.

b) Let \(T \) be a complete theory of some language \(L \) and let \(\bar{\Phi} (x) \) be an \(L \)-type consistent with \(T \). Assume that \(\bar{\Phi} \) is omitted on some model of \(T \). Prove that \(\bar{\Phi} \) is realized in some model of \(T \) by at least two different elements.

2. a) Let \(T \) be a complete theory in a countable language \(L \) and let \(A \) be the prime model of \(T \). Let \(\bar{\Phi} (x) \) be any \(L \)-type. Prove that there is some \(L \)-type \(\bar{\Psi} (x) \) such that \(\bar{\Psi}^A = A - \bar{\Phi}^A \).

b) Let \(L \) be a countable language and let \(L' = L \cup \{ c_1, \ldots, c_k \} \) where \(c_1, \ldots, c_k \) are individual constants not in \(L \). Let \(T \) and \(T' \) be complete theories of \(L \) and \(L' \) respectively and assume \(T \subseteq T' \). Prove that \(T \) has a countable universal model iff \(T' \) has a countable universal model.

3. a) Let \(L \) be a countable language. An \(L \)-structure \(A \) is said to be locally finite iff every element of \(A \) belongs to a finite \(L \)-definable subset of \(A \). Let \(T \) be a complete \(L \)-theory and assume that no model of \(T \) is locally finite. Prove that there is some \(L \)-formula \(\varphi (x) \) consistent with \(T \) such that for every \(L \)-formula \(\psi(x) \) and every model \(A \) of \(T \), \(\varphi^A \cup \psi^A \) is infinite provided it is not empty.
b) Let T be a complete theory in a countable language L. Let A be a countable model of T which is not prime and let \(\Phi(x) \) be a type omitted on A. Prove that there is some countable model of T which also omits \(\Phi \) but is not isomorphic to A.

[Warning: You cannot assume that T has a prime model.]

4. a) Assume that A and B are r.e. subsets of \(\omega \) such that \(A \cup B \) is recursive. Prove that there are recursive sets \(A' \subseteq A \) and \(B' \subseteq B \) such that \(A \cup B = A' \cup B' \).

b) Recall that if \(\psi(x) \) is a \(\Sigma \)-formula (in the language for arithmetic on the natural numbers) and if \(Q \vdash \exists x \psi(x) \) then \(Q \vdash \psi(\bar{n}) \) for some n in \(\omega \). Prove that there is no total recursive function f such that whenever \(\psi(x) \) is a \(\Sigma \)-formula and \(Q \vdash \exists x \psi(x) \) then \(Q \vdash \psi(\overline{f(k)}) \) where \(k = \gamma \psi^\neg \).

[Hint: Let \(\psi(x,y) \) be a \(\Sigma \)-formula representing in Q the relation "x is the Gödel number of a proof from Q of the sentence whose Gödel number is y" and consider the formulas \(\varphi_1(x) = \psi(x,\overline{1}) \).]

5. a) Given a language \(L_1 \) let \(L_2 = L_1 \cup \{ c \} \) where c is an individual constant not in \(L_1 \). Let \(T_2 \) be a finitely axiomatizable essentially undecidable theory of \(L_2 \) and let \(T_1 = T_2 \cap S_{\omega} \). Prove that \(T_1 \) is also essentially undecidable.

b) Prove that \(\{ e : W_e \not= \omega \} \preceq_m \{ e : W_e \text{ is finite} \} \).

[Hint: First define a partial recursive function \(f(e,x) \) which converges iff \(\{ e \} (y) \) converges for all \(y < x \).]

6. a) Let A and B be subsets of \(\omega \). Prove that B is A-r.e. iff \(B \preceq_m A' \) where \(A' \) is the jump of A.

b) Let \(C = \{ \overline{\sigma^\neg} : N \models \sigma \} \) where N is the standard model of arithmetic on the natural numbers. Prove that \(A \preceq_T C \) for all arithmetic sets A, and use this to conclude that C is not arithmetic.
1. a) Given a theory T and a sentence ϑ of L, assume that for every model A of T, $A \models \vartheta$ iff A is finite. Prove that there is some $n \in \omega$ such that for every model A of T, $A \models \vartheta$ iff A has at most n elements.

b) Let A and B be L-structures and assume that B is a proper elementary extension of A. Assume further that there is an L-formula $\varphi(x,y)$ such that $A = \{ b \in B : B_B \models \varphi(b, b_0) \}$ for some b_0 in B. Prove that $b_0 \notin A$.

2. a) Let $T = \text{Th}((\mathbb{Q},+,\cdot,<,0,1))$. Prove that T does not have a countable saturated model.

b) Let T be a complete L-theory, let L' be a language containing L and let T' be an L'-theory containing T. Assume that A is a model of T which has an elementary extension which can be expanded to an L'-structure which is a model of T'. Prove that every model B of T has an elementary extension which can be expanded to a model of T'.

3. Let L be a countable language containing (at least) a binary relation symbol \prec and individual constants c_n for all $n \in \omega$. Let T be a complete theory of L containing (at least) the axioms that \prec is a linear order of the universe and $c_n \prec c_{n+1}$ for all $n \in \omega$. Call a model A of T standard if for every $a \in A$ there is some $n \in \omega$ such that $A_A \not\models \bar{a} \prec c_n$. Let A^* be an ω-saturated model of T.

a) Prove that if A^* is standard then there is some $n \in \omega$ such that $A^* \models \forall x (x \preceq c_n)$.

b) Assume that for every L-formula $\varphi(x)$ such that $A^* \models \exists x \varphi(x)$ there is some $n \in \omega$ such that $A^* \models \exists x [\varphi(x) \land x \preceq c_n]$. Prove that T has a standard model.
4. Let T be a recursively axiomatized extension of the theory Q which is true on $\mathbb{N} = (\omega, +, *, <, 0, s)$. Let $R \subseteq \omega \times \omega$ be representable in T by the Σ_1-formula $\varphi(x, y)$. Let $X = \{k : \exists l \ R(k, l) \ \text{holds}\}$.

a) Show X is weakly representable in T by $\exists y \ \varphi(x, y)$.

b) Assume X is not recursive. Prove that there is some $k \in \omega$ such that $T \vdash \neg \varphi(k, 1)$ for all $l \in \omega$ but $T \not\vdash \forall y \neg \varphi(k, y)$.

5. a) Let \mathcal{F} be a set of partial recursive functions of one argument, and let $I = \{e : (e) \in \mathcal{F}\}$. Prove that $I \notin \mathfrak{m}(\omega - I)$.

b) Let A and B be subsets of ω. Assume B is r.e. but not recursive and that $B \leq_m A$. Prove that A contains an infinite r.e. subset.

6. a) Let L_0 be the language with no non-logical symbols.

i) Show that there is a theory T_0 of L_0 which is undecidable.

ii) Can there be an undecidable L_0-theory T_0 which has only finite models? Explain.

b) Let X be an r.e. subset of ω. Let $I = \{e : W_e = X\}$. Prove that I is Π_2.