Statistics (Ph. D. Version)

Instructions to the Student

a. Answer all six questions. Each will be graded from 0 to 10.

b. Use a different booklet for each question. Write the problem number and your code number (NOT YOUR NAME) on the outside cover.

c. Keep scratch work on separate pages in the same booklet.

d. If you use a “well known” theorem in your solution to any problem, it is your responsibility to make clear which theorem you are using and to justify its use.

1. Let X be one observation from Cauchy(θ) distribution.
 (a) Does this family have an MLR?
 (b) Show that the test
 \[
 \phi(x) = \begin{cases}
 1 & \text{if } 1 < x < 3 \\
 0 & \text{otherwise.}
 \end{cases}
 \]
 is most powerful of its size for testing $H_0 : \theta = 0$ versus $H_1 : \theta = 1$. Calculate Type I and Type II Error probabilities.
 (c) Prove or disprove: The test in part (b) is UMP for testing $H_0 : \theta \leq 0$ versus $H_1 : \theta > 0$.

2. Let X_1, X_2 be iid Unif($\theta, \theta + 1$). For testing $H_0 : \theta = 0$ versus $H_1 : \theta > 0$ we have two competing tests:

 $\phi_1(X_1) :$ Reject H_0 if $X_1 > 0.95$
 $\phi_2(X_1, X_2) :$ Reject H_0 if $X_1 + X_2 > C$
(a) Find the constant C so that ϕ_2 has the same size as ϕ_1.
(b) Calculate the power function of each test.
(c) Prove or disprove: ϕ_2 is a more powerful test than ϕ_1.

3. For a random variable X, $F(x) = P(X \leq x)$ and $F(x^−) = P(X < x)$.
The empirical CDF of iid $X_1, ..., X_n$ is given by

$$F_n(x) = \frac{\text{Number of } X_i \leq x}{n}.$$

Given iid $X_1, ..., X_n$ from CDF F_0, the non-parametric likelihood of the CDF F is

$$L(F) = \prod_{i=1}^{n} [F(X_i) - F(X_i^−)].$$

Let $X_1, ..., X_n$ be iid from CDF F_0. Let F_n be the empirical CDF and let F be any CDF. Prove that if $F \neq F_n$ then $L(F) < L(F_n)$.

Hint: $\log(x) \leq x - 1$ for $x > 0$.

4. Let $X_1, ..., X_n$ be a random sample from $N(0, \sigma_x^2)$, and let $Y_1, ..., Y_m$ be a random sample from $N(0, \sigma_y^2)$, independent of the X’s. Define $\lambda = \sigma_y^2/\sigma_x^2$.

(a) Find a level α LRT of $H_0 : \lambda = \lambda_0$ versus $H_1 : \lambda \neq \lambda_0$.
(b) Express the rejection region of the LRT in (a) in terms of an F random variable.
(c) Find a $1 - \alpha$ confidence interval for λ.

5. Suppose $X_1, ..., X_n$ are iid taking values in $\{x_0, x_1, ..., x_k\}$. Let $p(\theta) = (p(x_0, \theta), ..., p(x_k, \theta))^T$, where for $\theta \in \Theta$, Θ open $\subset R$,

$$p(x_j, \theta) = P_{\theta}(X_1 = x_j), \quad j = 0, 1, ..., k.$$

The problem is to estimate the one-dimensional θ.

Let $\mathbf{N} = (N_0, N_1, ..., N_k)$ where $N_j = \sum_{i=1}^{n} I(X_i = x_j)$ is sufficient and $I(A) = 1$ if A is true and is 0 otherwise. Define a function h by

$$h(p(\theta)) = \theta, \quad \forall \theta \in \Theta.$$
Consider the plug-in estimator \(h \left(\frac{N}{n} \right) \). Under regularity conditions it is known that as \(n \to \infty \)

\[
\sqrt{n} \left(h \left(\frac{N}{n} \right) - \theta \right) \xrightarrow{L} N(0, \sigma^2(\theta, h)).
\]

Assume differentiability as needed.
(a) Provide an example of \(h \).
(b) Obtain \(p(X_1, \theta) \).
(c) Provide a lower bound for \(\sigma^2(\theta, h) \).

6. Suppose \(Y_n \) is a sequence of random variables such that

\[
\sqrt{n}(Y_n - \theta) \xrightarrow{L} N(0, \sigma^2).
\]

For a differentiable function \(g \) and a specific number \(\theta \), suppose \(g'(\theta) = 0 \), but \(g''(\theta) \neq 0 \).
(a) Obtain the asymptotic distribution of \(n[g(Y_n) - g(\theta)] \).
(b) Suppose \(\bar{X} \) is a random sample mean and \(E(X_1) = \mu \neq 0 \). Obtain the asymptotic distribution of \(\sqrt{n} \left(1/\bar{X} - 1/\mu \right) \).