Spring 2020 Graduate Courses in AMSC/MATH/STAT
Monday/Wednesday/Friday | ||
---|---|---|
9:00 |
|
|
10:00 | Math 674/AMSC 674 Math 620 | Partial Differential Equations II (Grillakis) Algebraic Number Theory I (Ramachandran) |
11:00 | Math 602 Stat 730 | Homological Algebra (Brosnan) Fundamental concepts of time series (Kedem) |
12:00 | Math 636
| Representation Theory (Adams) |
1:00 | Math 858L Math 808G | Mathematical Methods in Machine Learning (Dong) Introduction to Stacks (Haines) |
2:00 | Math 713 Stat 741 | Mathematical Logic II (Laskowski) Linear Statistical Models II (Smith) |
MW 3:00-4:30 | Stat 818B | Bayesian Statistical Analysis (Lahiri)
|
MW 5-6:15 | Stat 650
| Applied Theory of Stochastic Processes (Slud)
|
Tuesday/Thursday | ||
---|---|---|
9:30 | Math 601 AMSC 661 Stat 701
| Abstract Algebra II (Schafer) Scientific Computing II (Imbert-Gerard) Mathematical Statistics II (Ren) |
11:00 | Math 740 Math 848I Stat 601 AMSC 664 AMSC 764 | Fundamental Concepts of Differential Geometry (Wentworth) Exterior Differential Systems (Melnick) Probability Theory II (Cerrai) Advanced Scientific Computing II (Bedrossian/Cameron) Advanced Numerical Optimization (Goldstein) |
12:30 | Math 631 Math 734 | Real Analysis II (Czaja) Algebraic Topology (Goldman) |
2:00 | Math 848T Math 660 Math 858N Stat 818N | Scissors congruence, spectral sequences, and Hilbert's third problems (Zickert) Complex Analysis I (Tamvakis) Topics in Nonlinear Functional Analysis (Fitzpatrick) Nonparametric Regression (Saegusa) |
3:30 | MATH858R/CMSC858R | Ramsey Theory and its applications (Gasarch) |
5-6:15 | AMSC 715 | Numerical Methods for Evolution PDEs (Nochetto) |