The AWM Distinguished Colloquium series is being established in Spring 2021 in celebration of the 50th anniversary of the founding of the Association for Women in Mathematics. The series will comprise three colloquium talks this spring and will continue thereafter with one colloquium per semester.

## Spring 2021

**Speaker:** Gigiliola Staffilani (MIT)**When:** Wednesday, February 17, 2021 at 3:00 p.m.**Where:** Online Zoom**Abstract:** Waves: Building Blocks inWaves: Building Blocks inNature and in Mathematics

In this talk I will first give a few examples of wave phenomena in nature. Then I willIn this talk I will first give a few examples of wave phenomena in nature. Then I willexplain how, in order to understand these phenomena, mathematicians use toolsfrom many different areas of mathematics, such as Fourier analysis, harmonicanalysis, dynamical systems, number theory, and probability. I will also giveexamples of the beautiful interaction between the “concrete" and the “abstract,” andhow these interactions constantly advance the boundaries of research.

#### About the Speaker

Gigliola Staffilani is Abby Rockefeller Mauze Professor of Mathematics at MIT.Gigliola Staffilani is Abby Rockefeller Mauze Professor of Mathematics at MIT.She has previously held positions at the Institute for Advanced Study, Stanford,Harvard, and Brown Universities. She graduated from the Universitá di Bolognain 1989 and obtained her Ph.D. from the University of Chicago in 1995.Staffilani is a Fellow of the American Academy of Arts and Sciences, theMassachusetts Academy of Sciences, and the American Mathematical Society.She has held fellowhips from the Sloan, Guggenheim, and Simons foundations.Her research concerns harmonic analysis and partial differential equations,including the Korteweg–de Vries equation and the Schrödinger equation.

**Speaker:** Sommer Gentry (US Naval Academy) **When:** Wednesday, March 24, 2021 at 3:00 p.m.**Where:** Online**Abstract:** People who volunteer as living kidney donors are often incompatible with their intended recipients. Kidney paired donation matches one patient and his or her incompatible donor with another pair in the same situation for an exchange. The lifespan of a transplant depends on the immunologic concordance of donor and recipient. We represent the patient-donor pairs with an undirected, edge-weighted graph and formulate the problem in terms of integer programming. I will propose an edge weighting of G which guarantees that every matching with maximum weight also has maximum cardinality, and also maximizes the number of transplants for an exceptional subset of recipients, while favoring immunologic concordance.

#### About the Speaker

Sommer Gentry is a Professor of Mathematics at the United States Naval Academy, and is also on the faculty of the Johns Hopkins University School of Medicine. She has a B.S. in Mathematical and Computational Science and an M.S. in Operations Research, both from Stanford University, and a Ph.D. in Electrical Engineering and Computer Science from MIT. She designed matching optimization methods used for nationwide kidney paired donation registries in both the United States and Canada, and is now redistricting liver sharing boundaries to help reduce geographic disparities in transplantation. Her work has attracted the attention of major media outlets including Time Magazine, Reader’s Digest, Science, the Discovery Channel, and National Public Radio. Gentry has received the MAA’s Henry L. Alder award for distinguished teaching and was named the Naval Academy’s 2021 recipient of the Class of 1951 Civilian Faculty Excellence in Research award.

**Speaker:** Kathryn Mann (Cornell University)**When:** Wednesday, April 21, 2021 at 3:15 p.m.**Where:** Kirwan Hall 3206**Abstract:** Dynamics in dimensions 1 and 3

Suppose you have a group of transformations of a space. If you know something about individual transformations, can you extrapolate to say something global about the whole system? The paradigm example of this is an old theorem of Hölder: if you have a group of homeomorphisms of the real line and none of them fixes a point, then the group is abelian and the whole system is conjugate to an action by translations. My talk will be an illustrated introduction to this family of problems, including some recent joint work with Thomas Barthelmé that gives a new such result about groups acting on the line. As an application, we use this to prove rigidity results for a different, fascinating family of dynamical systems, Anosov flows in dimension 3.

#### About the Speaker

Kathryn Mann is an Assistant Professor of Mathematics at Cornell University. She has previously held positions at UC Berkeley and Brown University. She graduated from the University of Toronto in 2008 with degrees in Mathematics and Philosopy and obtained her Ph.D. from the University of Chicago in 2014. Her research has been recognized with the Mary Ellen Rudin Young Researcher Award, the AWM's Joan and Joseph Birman Research Prize in Geometry and Topology, and the Wroclaw Mathematical Foundation's Kamil Duszenko Award. She has held a CAREER grant from the NSF and a Sloan Fellowship. She studies fundamental questions about groups actions on manifolds, including rigidity of homeomorphism and diffeomorphism groups of manifolds.

## Fall 2021

**Speaker:** Maria Emelianenko (George Mason University)**When:** Wednesday, December 8, 2021 at 3:15 p.m.**Where:** Kirwan Hall 3206**Abstract:** Entropy and random walks in materials, biology and quantum information science

What do mathematics, materials science, biology and quantum information science have in common? It turns out there are many connections worth exploring. In this talk, I will focus on graphs and entropy, starting from the classical mathematical constructs and moving on to applications. We will see how the notions of graph entropy and KL divergence appear in the context of characterizing polycrystalline material microstructures and predicting their performance under mechanical deformation, while also allowing to measure adaptation in cancer networks and entanglement of quantum states. We will discover unified conditions under which master equations for classical random walks exhibit nonlocal and non-diffusive behavior and discuss how quantum walks may allow to realize the coveted exponential speedup.

#### About the Speaker

Maria Emelianenko is Professor and Chair of Mathematics at George Mason University. She earned her B.S. in Computer Science and Mathematics from Moscow State University in 1999 and her Ph.D. in 2005 from Pennsylvania State University. She subsequently held a postdoctoral position at the Center for Nonlinear Analysis at Carnegie Mellon University. For her work in numerical computation and scientific computing, she was awarded an NSF CAREER grant in 2011, a Mason Emerging Researcher Award in 2013, and the Penn State Alumni Society Early Career Award in 2014. She is a member of the US National Committee for Theoretical and Applied Mechanics. Her research specialties include the study of grain growth and Voronai tesselations.