Abstract: We are going to discuss some recent developments in the study of finite point configuration in sets of a given Hausdorff dimension. We shall also survey some applications of the finite point configuration machinery to the problems of existence and non-existence of exponential/Gabor bases and frames.
Abstract: Our goal here is to introduce recent developments of analysis of highly oscillatory functions. In particular we will sketch methods extending conventional Fourier analysis, exploiting both phase and amplitudes of holomorphic functions. The miracles of nonlinear complex holomorphic analysis, such as factorization and composition of functions lead to new versions of holomorphic orthonormal bases , relating them to multiscale dynamical systems, obtained by composing Blaschke factors.
We also, remark, that the phase of a Blaschke product is a one layer neural net with ($\arctan$ as an activation sigmoid) and that the composition is a "Deep Neural Net" whose depth is the number of compositions, our results provide a wealth of related libraries of orthogonal bases . We will also indicate a number of applications in medical signal processing , as well in precision Doppler. Each droplet in the phase image below represent a unit of a two layers deep net and gives rise to an orthonormal basis the Hardy space
4176 Campus Drive - William E. Kirwan Hall
College Park, MD 20742-4015
P: 301.405.5047 | F: 301.314.0827