### View Abstract

Abstract: The Chirikov standard map $F_L$ is a prototypical example of a one-parameter family of volume-preserving maps for which one anticipates chaotic behavior on a non-negligible (positive-volume) subset of phase space for a large set of parameters. Analysis in this direction is notoriously difficult, and it remains an open question whether this chaotic region, the stochastic sea, has positive Lebesgue measure for any value of L.

I will discuss two related results on a more tractable version of this problem. The first is a kind of Ã¢Â€Â˜finite-time mixing estimate, indicating that for large L and on a suitable timescale, the map $F_L$ is strongly mixing. The second pertains to statistical properties of compositions of standard maps with increasing parameter L: when the parameter L increases at a sufficiently fast polynomial rate, we obtain asymptotic decay of correlations estimates, a Strong Law, and a CLT, all for Holder observables.