• Mapping the Mind

    Junior computer science and mathematics double major Brooke Guo analyzes neural connections to understand the causes of complex brain conditions like schizophrenia.  When Brooke Guo arrived at the University of Maryland as a freshman in 2022, she knew she wanted to help people and work in a health-related field someday. Read More
  • Four Science Terps Awarded 2025 Goldwater Scholarships

    Four undergraduates in the University of Maryland’s College of Computer, Mathematical, and Natural Sciences (CMNS) have been awarded 2025 scholarships by the Barry Goldwater Scholarship and Excellence in Education Foundation, which encourages students to pursue advanced study and research careers in the sciences, engineering and mathematics.  Over the last 16 years, UMD’s nominations Read More
  • Announcing the Winners of the Frontiers of Science Awards

    Congratulations to our colleagues who won the 2025 Frontiers of Science Award: - Dan Cristofaro-Gardiner, for his join paper with Humbler and Seyfaddini: “Proof of the simplicity conjecture”, Annals of Mathematics 2024. - Dima Dolgopyat & Adam Kanigowski, for their joint paper with Federico Rodriguez Hertz: “Exponential mixing implies Bernoulli”, Annals of Mathematics Read More
  • 2024 Putnam Results

    We are very excited to report that our MAryland Putnam team ranked 7th among 477 institutions that participated in the 2024 Putnam math competition. Our team members this year were Daniel Yuan, Isaac Mammel, and Clarence Lam. Daniel Yuan ranked 26th among 3,988 participants. Clarence Lam and Isaac Mammel were recognized for Read More
  • From Math Olympiads to Diplomacy: Meet Visiting Math Professor Qendrim Gashi

    Maryland Global, published a great interview with our visiting professor (and diplomat), Qendrim Gashi. The interview is available at https://marylandglobal.umd.edu/about/news/math-olympiads-diplomacy-meet-visiting-math-professor-qendrim-gashi Read More
  • 1
  • 2
  • 3
  • 4
  • 5

Description

Rigorous discussion of fundamental concepts of analysis in several variables combined with computational algorithms such as Newton's method and the method of steepest descent. Application to problems in many areas with a view to both computing solutions and deriving qualitative conclusions about the models. (This course is not open to students who have completed Math 350 and 351. Credit may not granted for both Math 412 and 411.)

Prerequisites

A C- or better in MATH 410

Topics

The basics

Vector norms on Rn
Open sets
Closed sets
Compactness
Connectedness
Continuous functions
Max and min
Uniform continuity
Differentiable functions (linear approximation)
Mean value theorem
Hessian matrix
Positive definite matrices
Second derivative test
Taylor expansions for functions of several variables

Solving equations

Matrix norms
Perturbations of invertible liner maps
Contraction mapping principle
Inverse function theorem
Newton's method
Implicit function theorem

Optimization

Method of steepest descent
Constrained optimization: method of Lagrange multipliers
Kuhn-Tucker formulation of inequality constraints

Integration in several variables

Extensions of trapezoid and Simpson's rule to higher dimensions
Change of variable in multiple integrals
Applications of change of variable in numerical calculation and statistics
Derivation of the Euler equations of fluid flow

  • 1
  • 2